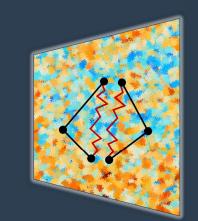


A Match Made in Heaven:

Linking Observables in Inflationary Cosmology

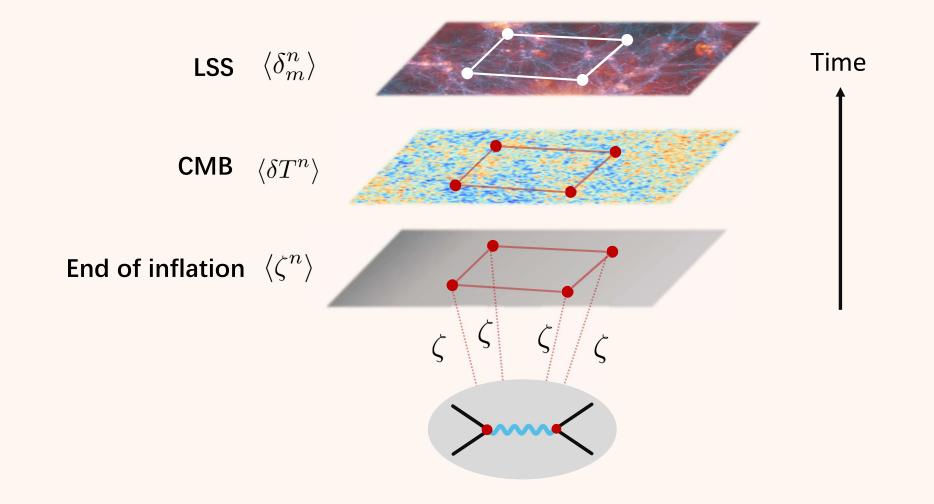
Yuhang Zhu (IBS, CTPU-CGA) @Prague| 07 April 2025



Based on: 2504.XXXX 2406.00099 2309.07769

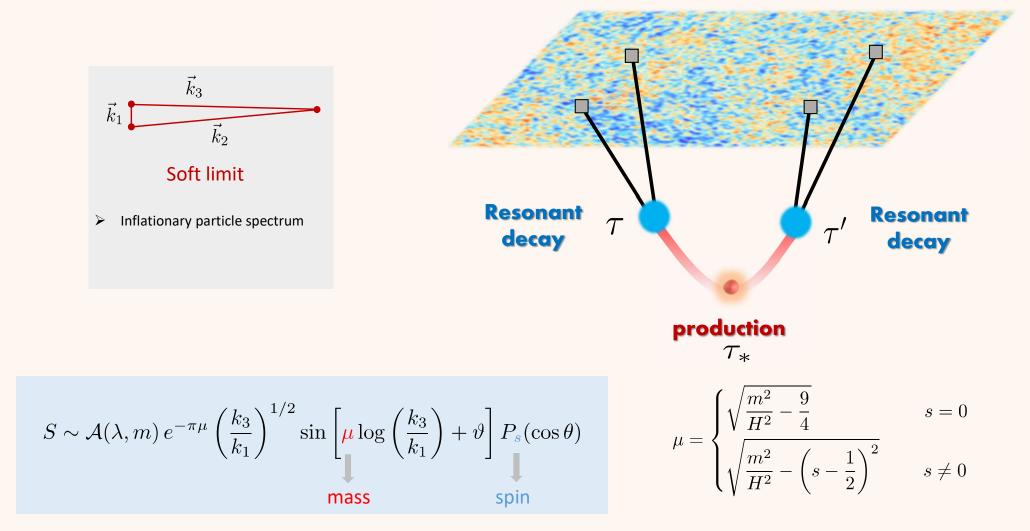
In collaboration with: David Stefanyszyn and Xi Tong

Cosmological correlators

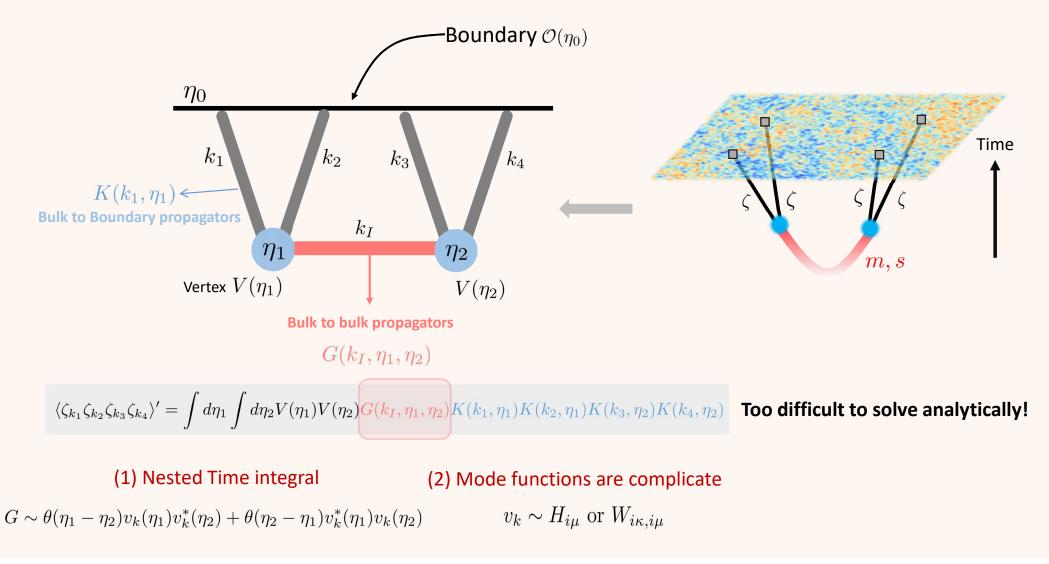


Inflation as the Cosmological Collider

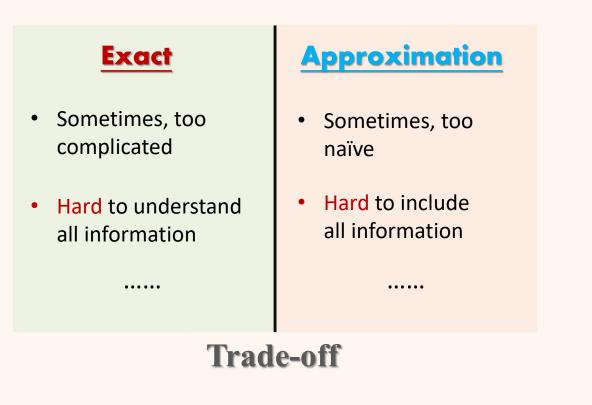
Inflation as the Cosmological Collider (CC)



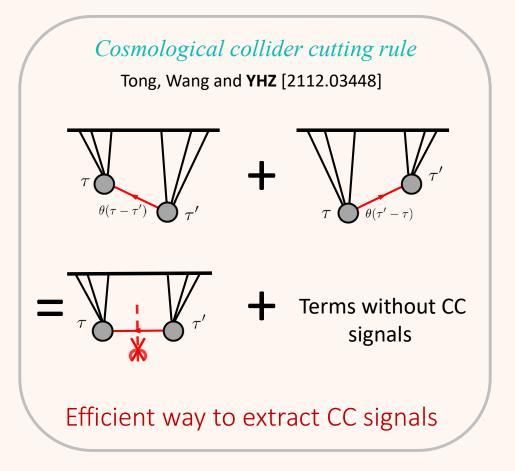
Analytical Calculation of cosmological correlators

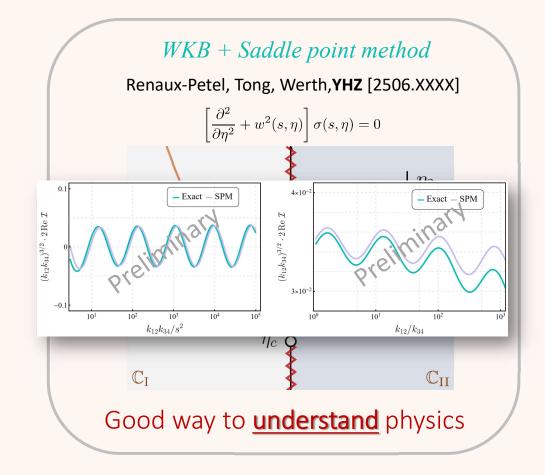


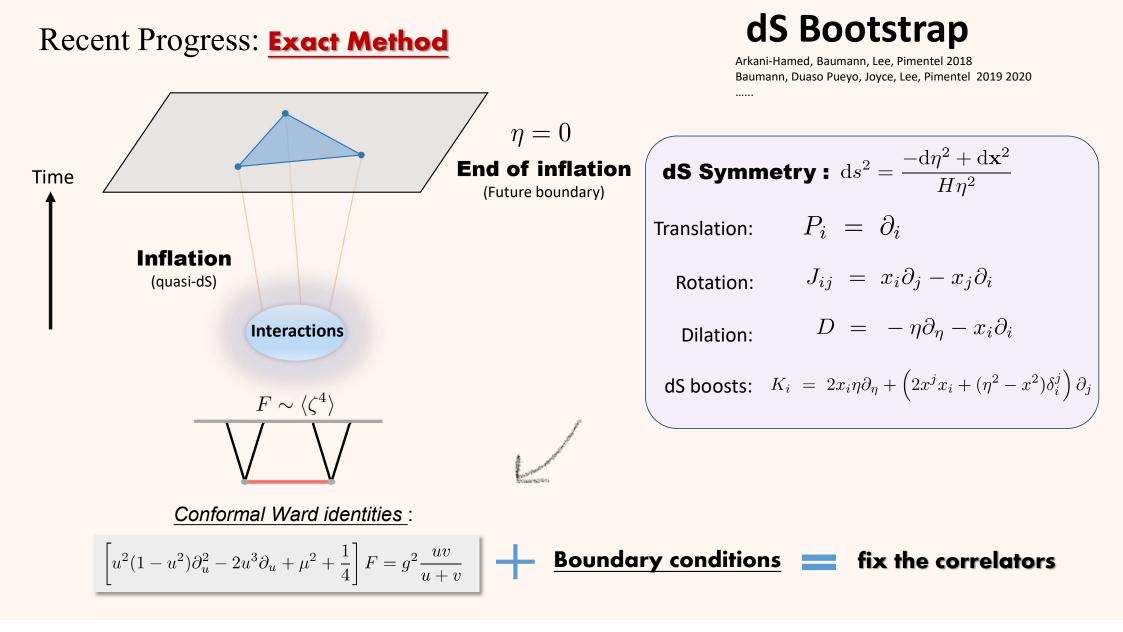
BUT, the calculation of cosmological correlators is really HARD!



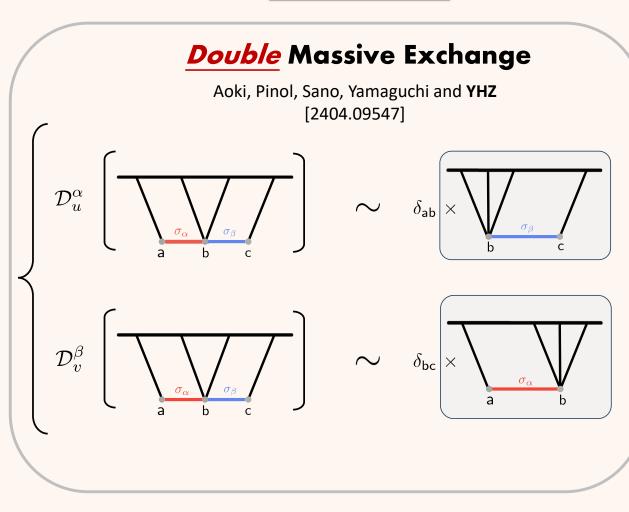
Recent Progress: Approximation Method







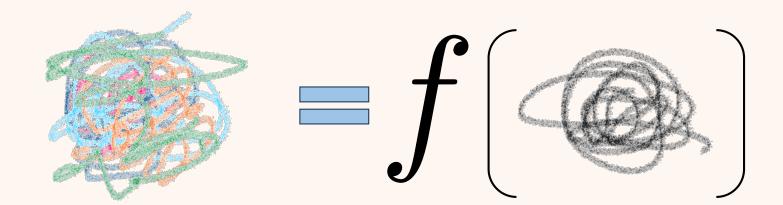
Recent Progress: **Exact Method**



 $\mathcal{I}_{+++}(r_1, r_3)$ $=\sum_{k=1}^{\infty}\sum_{j=1}^{\infty}\pi^{2}e^{\pi(\mathsf{a}\mu_{\alpha}+\mathsf{b}\mu_{b})}\mathrm{csch}(2\pi\mathsf{a}\mu_{\alpha})\operatorname{csch}(2\pi\mathsf{b}\mu_{\beta})\left(\frac{r_{1}}{2}+\frac{r_{3}}{2}-1\right)^{3}r_{1}^{-\frac{1}{2}+m+\mathsf{i}\mathfrak{a}\mu_{\alpha}}r_{3}^{-\frac{1}{2}+\mathsf{i}\mathfrak{b}\mu_{\beta}}$ $\times \Gamma \left[\begin{array}{c} \frac{1}{2} + m + \mathrm{i} \mathbf{a} \mu_{\alpha} \\ 1 + m, 1 + m + 2 \mathrm{i} \mathbf{a} \mu_{\alpha} \end{array} \right] {}_{2}\mathcal{F}_{1} \left[\begin{array}{c} \frac{1}{2} + \mathrm{i} \mathbf{b} \mu_{\beta}, 2 + m + \mathrm{i} \mathbf{a} \mu_{\alpha} + \mathrm{i} \mathbf{b} \mu_{\beta} \\ 1 + 2 \mathrm{i} \mathbf{b} \mu_{\beta} \end{array} \right] r_{3}$ $+ \left\{ \sum_{n=0}^{\infty} \frac{\pi^2}{2} \left[\operatorname{csch}(\pi\mu_{\alpha}) - \operatorname{sech}(\pi\mu_{\alpha}) \right] \operatorname{sech}(\pi\mu_{\beta}) \left(\frac{r_1}{2} + \frac{r_3}{2} - 1 \right)^3 r_1^{-\frac{1}{2} + m - \mathrm{i}\mu_{\alpha}} \right.$ $\times \Gamma \left[\begin{array}{c} \frac{1}{2} + m - \mathrm{i}\mu_{\alpha} \\ 1 + m, 1 + m - 2\mathrm{i}\mu_{\alpha} \end{array} \right] {}_{3}\mathcal{F}_{2} \left[\begin{array}{c} 1, 1, \frac{5}{2} + m - \mathrm{i}\mu_{\alpha} \\ \frac{3}{2} - \mathrm{i}\mu_{\beta}, \frac{3}{2} + \mathrm{i}\mu_{\beta} \end{array} \middle| r_{3} \right] + \left(\mu_{\alpha} \to -\mu_{\alpha}\right) \right\}$ $+ \left\{ \sum_{\alpha=\alpha}^{\infty} \frac{\pi^2}{2} \left[\operatorname{csch}(\pi\mu_{\beta}) - \operatorname{sech}(\pi\mu_{\beta}) \right] \operatorname{sech}(\pi\mu_{\alpha}) \left(\frac{r_1}{2} + \frac{r_3}{2} - 1 \right)^3 r_1^m r_3^{-\frac{1}{2} - \mathrm{i}\mu_{\beta}} \right.$ $\times \Gamma \left[\begin{array}{c} m+1\\ \frac{3}{2}+m-\mathrm{i}\mu_{\alpha}, \frac{3}{2}+m+\mathrm{i}\mu_{\alpha} \end{array} \right] {}_{2}\mathcal{F}_{1} \left[\begin{array}{c} \frac{1}{2}-\mathrm{i}\mu_{\beta}, \frac{5}{2}+m-\mathrm{i}\mu_{\beta}\\ 1-2\mathrm{i}\mu_{\beta} \end{array} \middle| r_{3} \right] + \left(\mu_{\beta} \to -\mu_{\beta}\right) \right\}$ $+\sum_{m=0}^{\infty}\pi^{2}\operatorname{sech}(\pi\mu_{\beta})\operatorname{sech}(\pi\mu_{\alpha})\left(\frac{r_{1}}{2}+\frac{r_{3}}{2}-1\right)^{3}r_{1}^{m}$ $\times \Gamma \left[\begin{array}{c} 1+m\\ \frac{3}{2}+m-\mathrm{i}\mu_{\alpha}, \frac{3}{2}+m+\mathrm{i}\mu_{\alpha} \end{array} \right] {}_{3}\mathcal{F}_{2} \left[\begin{array}{c} 1,1,3+m\\ \frac{3}{2}-\mathrm{i}\mu_{\beta}, \frac{3}{2}+\mathrm{i}\mu_{\beta} \end{array} \right] r_{3} \right] ,$

It becomes incredibly difficult to make further progress...

Without knowing the analytical results, can we still find something useful?



Maldacena's consistency relation

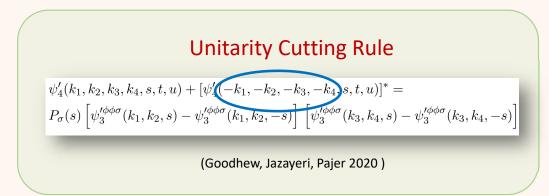
$$\begin{split} \langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \rangle &\sim - \langle \zeta_{\vec{k}_1} \zeta_{-\vec{k}_1} \rangle k \frac{d}{dk} \langle \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \rangle \\ &= - n_s \langle \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \rangle \langle \zeta_{\vec{k}_1} \zeta_{-\vec{k}_1} \rangle \ , \end{split}$$

(Maldacena, 2002)

Suyama-Yamaguchi Inequality

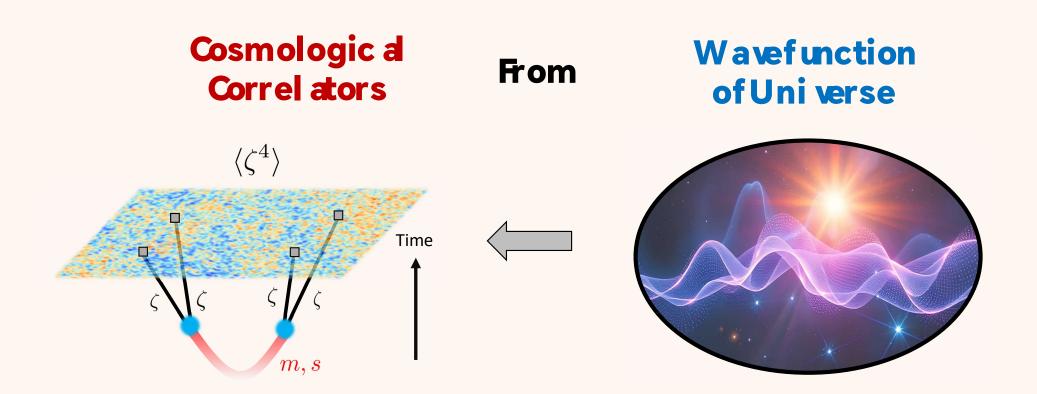
$$au_{\rm NL} \ge \left(\frac{6}{5}f_{\rm NL}\right)^2$$

(Suyama, Yamaguchi 2007)



 $k_1 \ll k_2, k_3$

Directl ytest able ? (in principle)



 $f(B_n) \equiv 0 \Psi$

Expand the wavefunction in powers of the field fluctuations:

Wavefunction coefficients

$$\Psi[\varphi] = \exp\left[+\sum_{n=1}^{\infty} \frac{1}{n!} \int_{\{\mathbf{k}\}} \psi_n(\mathbf{k}_1, \cdots, \mathbf{k}_n) \varphi(\mathbf{k}_1) \cdots \varphi(\mathbf{k}_n) (2\pi)^3 \delta^3(\mathbf{k}_1 + \cdots + \mathbf{k}_n)\right]$$

Parametrization • "Wavefunction of the universe":

$$\Psi[\varphi] = \langle \varphi | U(\eta_0, -\infty) | \mathrm{BD} \rangle = \int_{\mathrm{BD}}^{\Phi(\eta_0) = \varphi} \mathcal{D}\Phi \, e^{iS[\Phi]}$$

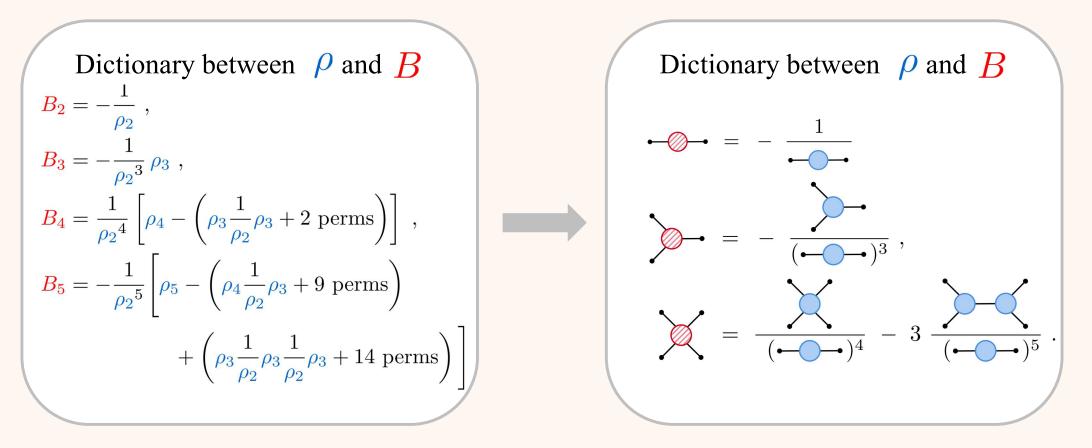
$$B_n \equiv \langle \varphi(\mathbf{k}_1) \cdots \varphi(\mathbf{k}_n) \rangle = \frac{\int \mathcal{D}\varphi \left| \Psi[\varphi] \right|^2 \varphi(\mathbf{k}_1) \cdots \varphi(\mathbf{k}_n)}{\int \mathcal{D}\varphi \left| \Psi[\varphi] \right|^2}$$
$$\Psi[\varphi] = \exp\left[+ \sum_{n=1}^{\infty} \frac{1}{n!} \int_{\{\mathbf{k}\}} \psi_n(\mathbf{k}_1, \cdots, \mathbf{k}_n) \varphi(\mathbf{k}_1) \cdots \varphi(\mathbf{k}_n) \right]$$

$$\rho_n(\{\mathbf{k}\}) = \psi_n(\{\mathbf{k}\}) + \psi_n^*(\{-\mathbf{k}\})$$

Dictionary between
$$\rho$$
 and B
 $B_2 = -\frac{1}{\rho_2}$,
 $B_3 = -\frac{1}{\rho_2^3} \rho_3$,
 $B_4 = \frac{1}{\rho_2^4} \left[\rho_4 - \left(\rho_3 \frac{1}{\rho_2} \rho_3 + 2 \text{ perms} \right) \right]$,
 $B_5 = -\frac{1}{\rho_2^5} \left[\rho_5 - \left(\rho_4 \frac{1}{\rho_2} \rho_3 + 9 \text{ perms} \right) + \left(\rho_3 \frac{1}{\rho_2} \rho_3 \frac{1}{\rho_2} \rho_3 + 14 \text{ perms} \right) \right]$

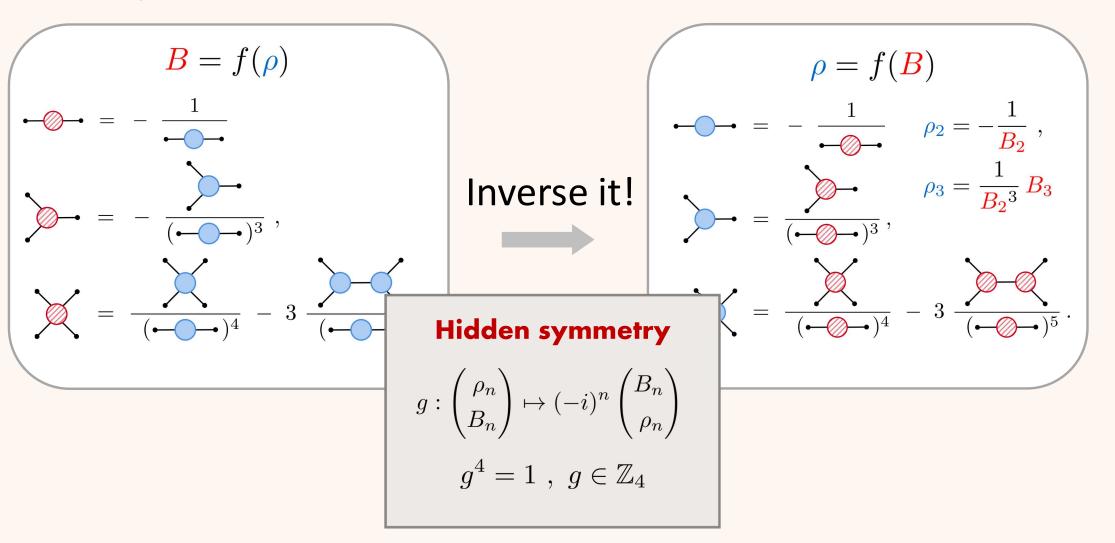
General relation:
$$B_n = \frac{1}{(-\rho_2)^n} \sum_{k=0}^{n-3} (-1)^k \left(k \text{-cuts}\right)_{\rho}$$

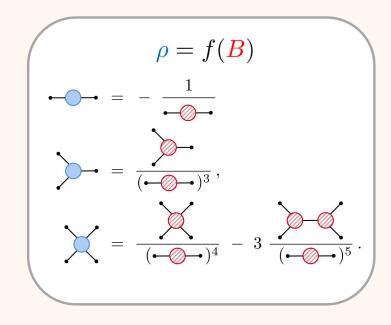
$$\begin{pmatrix} k\text{-cuts} \end{pmatrix}_{\rho} \equiv \sum_{n-k \ge n_1 \cdots n_{k+1} \ge 3} \left[\rho_{n_1} \frac{1}{\rho_2} \rho_{n_2} \cdots \rho_{n_k} \frac{1}{\rho_2} \rho_{n_{k+1}} \right.$$
$$+ (\pi_{n_1 \cdots n_{k+1}} - 1)\text{-perms} \left] .$$



diagrammatic notations:

Duality Relation

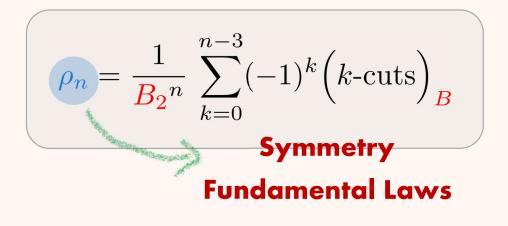




Two facts about parity-odd (scalar) correlators

It is purely imaginary

> At least 4-pts correlators



$$\rho_n^{\rm PO}(\{\mathbf{k}\}) \,=\, 0$$

Reality Thereom

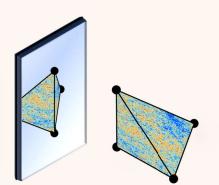
Theorem 4.1. (ψ_n -reality) The tree-level wavefunction coefficient of massless scalar fields is purely real, i.e. Im $\psi_n = 0$, in theories containing an arbitrary number of fields of any light mass, spin, coupling, sound speed and chemical potential, under the assumption of locality, unitarity, scale invariance, IR convergence and a Bunch-Davies vacuum.

Stefanyszyn ,Tong, Y.Z., [2309.07769]

- Unitarity & locality •
- **BD** vacuum •
- Tree level •
- Scale invariance •
- IR convergence ٠

 $\rho_n(\{\mathbf{k}\}) = \psi_n(\{\mathbf{k}\}) + \psi_n^*(\{-\mathbf{k}\})$ For the parity-odd case: $\rho_n^{\text{PO}}(\{\mathbf{k}\}) = \psi_n(\{\mathbf{k}\}) - \psi_n^*(\{\mathbf{k}\})$

 $\rho_n^{\rm PO}(\{\mathbf{k}\}) = 0$

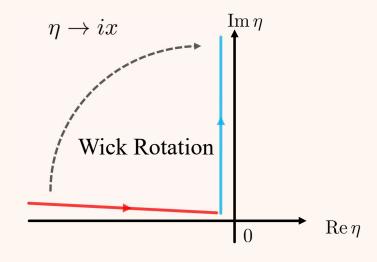


 $\operatorname{Im}\psi = 0$

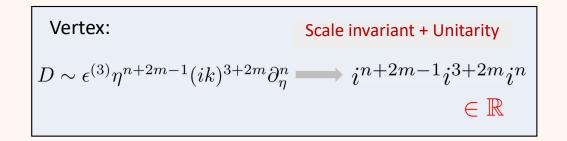
Reality Thereom

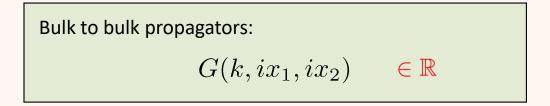
$$\psi_n = \int_{-\infty(1-i\epsilon)}^0 \left[\prod_{v=1}^V d\eta_v \, i\lambda_v \, D_v\right] \left[\prod_{e=1}^n K_e\right] \left[\prod_{e'=1}^I G_{e'}\right]$$

$$\mathcal{L}_N = \lambda \, a^{1-2m-n} \epsilon^{(3)} \partial_i^{3+2m} \partial_\eta^n \zeta^M \sigma^{N-M}$$

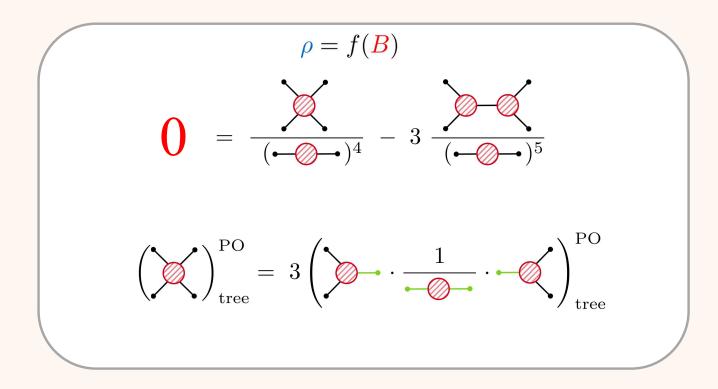


Bulk to boundary propagators: BD vacuum (massless fields) $K \sim (1 - ik\eta)e^{ik\eta}$ $(1 + kx)e^{-kx} \in \mathbb{R}$





CCF



<u>Correlator-to-correlator</u> <u>factorisation (CCF)</u>

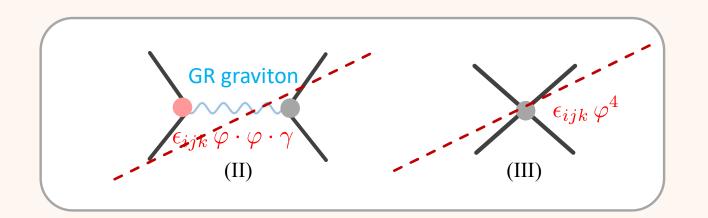
The First Example

Parity violation

Chern-Simons gravity: $\phi = \phi_0 + \varphi$ $S = \int d^4x \sqrt{-g} \left[-\frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + V(\phi) + \frac{M_{\rm pl}^2}{2} R - \frac{\phi}{4f} R_{\mu\nu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} \right]$

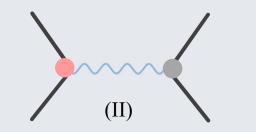


The First Example



No-go theorem:

Parity odd is absent at *tree level*, under the assumption: (1) All massless dS mode functions (2) BD vacuum (3) IR convergence ?



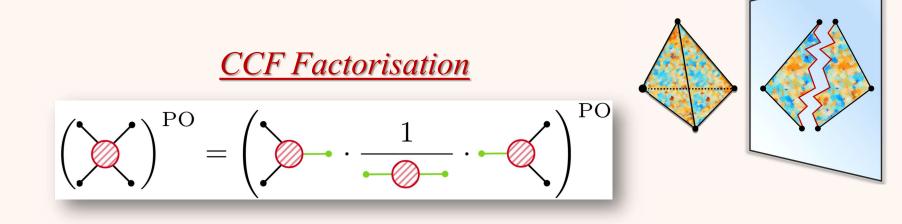
One possible IR divergent coupling

 $a(\eta)\epsilon_{ijk}\,\partial_i\varphi\partial_m\partial_j\varphi\,\gamma_{km}$

$$\int_{\infty}^{\eta_0} d\eta \, \frac{1}{\eta} \times \mathcal{O}(1)$$

NO such term in CS Gravity

Summary



$$\frac{CS-gravity\ example}{B_{\varphi\varphi\varphi\varphi}^{PO}} = -i\frac{\pi\kappa H^7}{16M_{pl}^2} \frac{[\hat{\mathbf{k}}_1 \cdot \hat{\mathbf{k}}_3 - (\hat{\mathbf{k}}_1 \cdot \hat{\mathbf{s}})(\hat{\mathbf{k}}_3 \cdot \hat{\mathbf{s}})]}{(k_1k_2k_3k_4)^2} \frac{\hat{\mathbf{s}} \cdot (\hat{\mathbf{k}}_2 \cdot \hat{\mathbf{k}}_4)}{s^3 E_L^2 E_R^2} \\ \times (E_L^3 - E_L\ e_2 - e_3) (E_R^3 - E_R\ \tilde{e}_2 - \tilde{e}_3)$$