Positivity bounds on electromagnetic properties of media

Borna Salehian

With Paolo Creminelli, Oliver Janssen and Leonardo Senatore Based on: 2405.09614

CAS-IBS CTPU-CGA-ISCT workshop in cosmology, gravity and particle physics 11 April 2025 Prague

Not everything goes

• Wilson coefficients are not arbitrary!

• E.g.
$$\mathscr{L} = -\frac{1}{4}F^2 + \frac{c}{\Lambda^4}F^4 + \dots$$
 then $c > 0$.

- $2 \rightarrow 2$ scattering: Causality + Unitarity
- Known as S-matrix bootstrap, EFT positivity bounds

[Adams et. al. (2006)]

Breaking Lorentz

- Eg. Cosmology, Condensed matter, QFT @ finite T or Q
- S-matrix is no longer a suitable observable!
 - High and low energy states are no longer related by boost.
 - The amplitude is no longer analytic!
- Instead: Two point function of a conserved current $\langle J^\mu J^
 u
 angle$

[Creminelli et. al. (2022,2023), Hui et. al. (2023)]

We will see this in action for the case of EM response of media

Linear response

Application an external EM field A_{ext}^{μ}

$$J_{\rm in}^{\mu}(x) = \int \mathrm{d}^4 y \, G_J^{\mu\nu}(x,y) A_{{\rm ext},\nu}(y) \,, \quad \text{Kubo formula}$$

In which the linear response is

 $G_J^{\mu
u}(x,y) = i\theta(x^0 - y^0) \langle [J^{\mu}(x), J^{\nu}(y)] \rangle +$ Contact terms Retarded two point function

This object has two interesting properties: analyticity + positivity

Causality \rightarrow Analyticity

Linear response is retarded and micro-causal, therefore in Fourier space it is analytic in FLC

Leontovich

We can parametrize \mathbb{C}^4 as $p^{\mu} = (\omega, \boldsymbol{q} + \omega \boldsymbol{\xi})$ FLC $\rightarrow \boldsymbol{\xi} < 1$

Maps the region of analyticity to the UHP

We can treat the analytic functions as being single variable and use Cauchy theorem, to derive Leontovich relation

$$\chi$$
 analytic $\chi(\omega, \boldsymbol{q} + \omega\boldsymbol{\xi}) = \frac{1}{i\pi} \text{PV} \int_{-\infty}^{+\infty} \frac{\mathrm{d}z}{z - \omega} \chi(z, \boldsymbol{q} + z\boldsymbol{\xi}) \overset{\text{Kramers-Kronig}}{\text{with }\xi \text{ dependence}}$

This relates the real part and the imaginary part of the function

Important assumption: The arc at infinity is negligible!

[Leontovich (1961), Creminelli et. al. (2022)]

|z|

 z_R

Positivity

The imaginary part of the response function characterizes the dissipation of the energy of the external source in the system.

$$\Delta H = \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \omega A_{\mathrm{ext},\mu}(-p) \operatorname{Im} G_J^{\mu\nu}(p) A_{\mathrm{ext},\nu}(p) \,,$$

This does not necessarily have a definite sign! Consider for example a Laser.

For passive medium it is positive. For these systems $\omega \text{Im}G_J^{\mu\nu}$ is positive definite.

Resolving the imaginary part

After some algebra we can see that $\text{Im}G_J^{\mu\nu}(p) = \frac{1}{2}\int d^4x \, e^{-ip\cdot x} \left\langle [J^{\mu}(x), J^{\nu}(0)] \right\rangle$

Inserting the resolution of the identity, with $\rho \left| n \right\rangle = c_n \left| n \right\rangle$, gives density matrix

$$V_{\mu}(p)V_{\nu}(p)\operatorname{Im} G_{J}^{\mu\nu}(p) = \frac{1}{2}\sum_{n,m} (2\pi)^{4}\delta(p+p_{n}-p_{m}) |\langle n|J^{\mu}(0)|m\rangle V_{\mu}(p)|^{2}(c_{n}-c_{m})$$

Sign of the imaginary part depends on the state.

A sufficient condition for positive definite $\omega \text{Im}G_J^{\mu\nu}$ is monotonicity of c_n e.g. ground state, thermal state

No gap !

Action for photon in matter

The system is described by in-in effective action $\Gamma[A_1, A_2]$.

The usual in-out effective action is not causal in dissipative systems.

At quadratic order, the effect of matter is encoded in the photon self-energy

$$\Pi^{\mu\nu}(x,y) = i\theta(x^0 - y^0) \langle [J^{\mu}(x), J^{\nu}(y)] \rangle_{1\text{PI}} + \text{ Contact terms}$$

In Fourier space

birefringence

$$\Pi^{\mu\nu} = -\pi_L(\omega, k)p^2 \mathcal{P}_L^{\mu\nu} + \pi_T(\omega, k)k^2 \mathcal{P}_T^{\mu\nu} + \overset{\text{Parity}}{\underset{\text{Violation}}{\text{Violation}}} + \overset{\text{Projection along }k^i \qquad \text{Projection orthogonal to }k^i$$

$$(1 - \sum_{I \to I}^{I \to I} \int_{I \to I}^{I$$

Action for photon in matter

These are
$$arepsilon$$
 μ in disguise $arepsilon -1 = g^2 \pi_L$, $1 - rac{1}{\mu} = g^2 \left(\pi_T - rac{\omega^2}{k^2} \pi_L
ight)$

The in-in effective action for photon is

$$\Gamma[A_r, A_a] = \frac{1}{g^2} \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \left[\varepsilon(\omega, k) \boldsymbol{E}_a(-p) \cdot \boldsymbol{E}_r(p) - \frac{1}{\mu(\omega, k)} \boldsymbol{B}_a(-p) \cdot \boldsymbol{B}_r(p) + \dots \right]$$

The low energy effective action is obtained by expanding the coefficients in powers of ω and k. For Insulators: no other relevant degrees of freedom, a local action: $\varepsilon = \varepsilon(0,0) + \dots$

$$\varepsilon(0,0) - 1 = \frac{2g^2}{\pi} \int_0^{+\infty} \frac{\mathrm{d}z}{z} \operatorname{Im} \pi_L(z, z\boldsymbol{\xi}) > (\varepsilon(0,0) - 1) + \xi^2 \left(1 - \frac{1}{\mu(0,0)}\right) = \frac{2g^2\xi^2}{\pi} \int_0^{+\infty} \frac{\mathrm{d}z}{z} \operatorname{Im} \pi_T(z, z\boldsymbol{\xi})$$

High energy

The assumption is that the infinity arc can be neglected.

No Froissart bound for correlation functions!

A model for the medium at high energies: Free Fermi gas.

The response is known as the Lindhard function: similar to QED at finite chemical potential. Plasma frequency: $\omega_p^2 = g^2 n/m$

High energy limit of the Lindhard function: $g^2 \pi_L \rightarrow -\frac{\omega_p^2}{\omega_p^2} + \dots, \qquad g^2 \pi_T \rightarrow -\frac{\omega_p^2}{k^2} + \dots,$

There is also a relativistic piece that grows logarithmically $\sim \log(p^2)$ starting from the pair production threshold $\sim m$.

Typically, $\omega_p^2/m^2 \sim 10^{-12}$, so this is negligible if we close the contour at much smaller energies. [Lindhard (1954)]

Higher Derivatives

Usually, the more interesting bounds appear for higher dimension operators in the EFT.

The situation gets complicated due to dissipation in the system.

All dissipative terms actually contribute

Compton scattering

We can think of a medium constructed out of a gas of (neutral) particles.

In the dilute limit, $\varepsilon \approx 1 + n\alpha$ and $\mu \approx 1 + n\beta$ in which α and β are electric and magnetic polarizability coefficients.

Polarizabilites can be measured by doing a low energy Compton scattering

$$\mathcal{M} \propto \left(\alpha \omega_1 \omega_2 \vec{\epsilon}_1 \cdot \vec{\epsilon}_2 + \beta (\vec{k}_1 \times \vec{\epsilon}_1) \cdot (\vec{k}_2 \times \vec{\epsilon}_2) \right)$$

natrix positivity $\alpha + \beta = \frac{1}{1 - 1} \left[\frac{\mathrm{d}\omega}{\mathrm{d}\omega} \sigma_{\mathrm{tot}}(\omega) > 0 \right]$

Using the S-matrix positivity $\alpha + \beta = \frac{1}{2\pi^2} \int \frac{d\omega}{\omega^2} \sigma_{tot}(\omega) > 0$

This is consistent with
$$n(\alpha + \beta) \approx \varepsilon - \frac{1}{\mu} = \frac{2g^2}{\pi} \int \frac{dz}{z} \operatorname{Im} \pi_T(z, z) > 0$$

Gravity

The analog of polarizability coefficient for gravity is know as tidal Love number.

Quantifies the response of a compact object to an external gravitational potential: electric and magnetic type.

They appear as coefficients in the low energy expansion of the two point function of the stress-tensor.

At least when gravity can be treated linearly, e.g. small compactness, the above analysis should apply: $\lambda_E > 0$, and $\lambda_E + \lambda_B > 0$ (And higher multipoles).

One can think of this as positivity bound for the point particle effective field theory

Summary

We studied bounds on the low energy response of a medium from causality and positivity.

- More general class of media, e.g. super-conductors
- Transport coefficients in a fluid
- Källén–Lehmann without Lorentz
- Cosmology

Thank you