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Not everything goes
• Wilson coefficients are not arbitrary!


• E.g.   then .


•  scattering: Causality + Unitarity 


• Known as S-matrix bootstrap, EFT positivity bounds

ℒ = − 1
4 F2 + c

Λ4 F4 + … c > 0

2 → 2

[Adams et. al. (2006)]



Breaking Lorentz
• Eg. Cosmology, Condensed matter, QFT @ finite T or Q


• S-matrix is no longer a suitable observable!


• High and low energy states are no longer related by 
boost.


•  The amplitude is no longer analytic!


• Instead: Two point function of a conserved current ⟨JμJν⟩

[Creminelli et. al. (2022,2023), Hui et. al. (2023)]



Analyticity

Positivity

We will see this in action for the case of EM response of media



Linear response
Application an external EM field 


In which the linear response is


This object has two interesting properties: analyticity + positivity 

Aμ
ext

Kubo formula

Retarded two point function
Contact terms



Causality  Analyticity→
Linear response is retarded and micro-causal, therefore in Fourier space it is 
analytic in FLC


exp(−ωIt + ⃗kI ⋅ ⃗x )
ωI > | ⃗kI | > 0



Leontovich
We can parametrize  as


Maps the region of analyticity to the UHP


We can treat the analytic functions as being single variable and use Cauchy 
theorem, to derive Leontovich relation


This relates the real part and the imaginary part of the function


Important assumption: The arc at infinity is negligible!


ℂ4

[Leontovich (1961), Creminelli et. al. (2022)]

FLC → ξ < 1

Kramers-Kronig 
with  dependenceξ analyticχ



Positivity
The imaginary part of the response function characterizes the dissipation of the 
energy of the external source in the system. 


 


This does not necessarily have a definite sign! Consider for example a Laser. 


For passive medium it is positive. For these systems  is positive 
definite.

ωImGμν
J



Resolving the imaginary part
After some algebra we can see that 


Inserting the resolution of the identity, with                          , gives


Sign of the imaginary part depends on the state.


A sufficient condition for positive definite  is monotonicity of 


No gap !

ImGμν
J (p)

ωImGμν
J cn

e.g. ground state, thermal state

density matrix



Action for photon in matter
The system is described by in-in effective action 


The usual in-out effective action is not causal in dissipative systems.


At quadratic order, the effect of matter is encoded in the photon self-energy 


In Fourier space


Γ[A1, A2] .

Πμν(x, y) = iθ(x0 − y0)⟨[Jμ(x), Jν(y)]⟩1PI + ⟨Nμν⟩1PIδ(x − y)Contact terms

Π ΠΔΠΠΠ GJ

Projection along ki Projection orthogonal to ki

Parity    
Violation+

birefringence



Action for photon in matter
These are   in disguise


The in-in effective action for photon is


 


The low energy effective action is obtained by expanding the coefficients in 
powers of  and . For Insulators: no other relevant degrees of freedom, a local 
action: 


ε μ

ω k
ε = ε(0,0) + …

> 0
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Paramagnetism

Longitudinal, no para-electric

Transverse , not super-luminalξ → 1

Purely magnetic response

Lorentz invariant



High energy
The assumption is that the infinity arc can be neglected.


No Froissart bound for correlation functions!


A model for the medium at high energies: Free Fermi gas.


The response is known as the Lindhard function: similar to QED at finite 
chemical potential.


High energy limit of the Lindhard function:


There is also a relativistic piece that grows logarithmically  starting 
from the pair production threshold . 


Typically, , so this is negligible if we close the contour at much 
smaller energies.  

∼ log(p2)
∼ m

ω2
p /m2 ∼ 10−12

[Lindhard (1954)]

Plasma frequency: ω2
p = g2n /m



Higher Derivatives
Usually, the more interesting bounds appear for higher dimension operators in 
the EFT.


The situation gets complicated due to dissipation in the system. 


 

[Bellazzini, et. al. (2020)]

Arc variable

Negative Positive

All dissipative terms actually contribute



Compton scattering
We can think of a medium constructed out of a gas of (neutral) particles.


In the dilute limit,  and  in which  and  are electric and 
magnetic polarizability coefficients.


Polarizabilites can be measured by doing a  low energy Compton scattering  


 


Using the S-matrix positivity


This is consistent with 


ε ≈ 1 + nα μ ≈ 1 + nβ α β

ℳ ∝ (αω1ω2 ⃗ϵ1 ⋅ ⃗ϵ2 + β( ⃗k1 × ⃗ϵ1) ⋅ ( ⃗k2 × ⃗ϵ2))
α + β = 1

2π2 ∫ dω
ω2 σtot(ω) > 0

n(α + β) ≈ ε − 1
μ

= 2g2

π ∫ dz
z

ImπT(z, z) > 0

ω1, k1, ϵ1

ω2, k2, ϵ2



Gravity
The analog of polarizability coefficient for gravity is know as tidal Love number.


Quantifies the response of a compact object to an external gravitational 
potential: electric and magnetic type.


They appear as coefficients in the low energy expansion of the two point 
function of the stress-tensor.


At least when gravity can be treated linearly, e.g. small compactness, the above 
analysis should apply: , and   (And higher multipoles).


One can think of this as positivity bound for the point particle                           
effective field theory

λE > 0 λE + λB > 0



Summary
We studied bounds on the low energy response of a medium from causality 
and positivity.


• More general class of media, e.g. super-conductors


• Transport coefficients in a fluid


• Källén–Lehmann without Lorentz


• Cosmology



Thank you


