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Event Horizon Telescope (EHT)

» Goal: Direct observation of black holes’ pho-
ton ring.

> Major Achievements: First-ever image of a
black hole (M87%) in 2019.

> Roger Penrose,
Reinhard Genzel, and Andrea Ghez.

LIGO/Virgo/KAGRA

» Goal: Detecting gravitational waves from
compact-object mergers.

LIGO Hanford

> Major Achievements: First detection of
black hole-black hole merger (GW150914,
2015).

e o o > Rainer Weiss,
LI Barry C. Barish, and Kip S. Thorne.
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Black holes have (no) hair!
@00

Black holes have no hair!

GR solutions are special

In General Relativity, every black hole is characterized
by only three observable quantities/“hairs™:

® Mass (M)

® Angular Momentum/Spin ()

® Electric charge (Q.)

Two black holes with the same values for these param-

eters are completely indistinguishable.
v

No(-scalar)-hair theorems

» J. D. Bekenstein, 1972 & 1995

HoO 3Mm>S 0O
< AR < H A+ DD

P J. D. Bekenstein [9605059/gr-qc] (short review)

P C. Herdeiro, E. Radu [1504.08209/gr-qc] (review)

More often than not, these theorems can be
evaded in Einstein-scalar-Gauss-Bonnet gravity

or Horndeski and beyond Horndeski theories.
v
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Black holes have (no) hair!

oeo

Black holes have no hair!

In gravitational theories beyond GR, black holes
might acquire additional properties, depending on

the theoretical framework. )

Scalar-tensor (ST) theories

scalar field)

H
For static and asymptotically flat black-hole solutions in ST

o -

b theories:

e r

y n ® Secondary hair: g, = guu (M; x>‘), & = o(M; x™)
d (no additional information)

[}

n e ® Primary hair: g, = g (M, q; ),

d s 6 = ¢(M, g x*)
k (additional information linked to the existence of the
i

In [2310.11919/gr-qc] we presented the first solution of a black
hole with primary scalar hair in a single field scalar-tensor the-
ory (beyond Horndeski gravity).

In [2312.17198/gr-qc], we generalized the method and obtained a
class of different solutions with primary scalar hair.

v
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Black holes have (no) hair!
ooe

Bocharova-Bronnikov-Melnikov-Bekenstein S olution ( 1970 S)

R R | e )
M 16m 12 2
Invariance of the EOM of ¢ under the conformal transformation:
B = Qgu, 6=07"¢

The BBMB solution

® There exist static and spherically symmetric black-hole solutions

2
dsZ:—(l—M> dtz—l—( g +r(d192+sm 9dp?) .

r -y

® The profile of the scalar field is non-trivial

/3 M
¢= 4rr—M

® The black holes possess secondary hair.
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Scalar-tensor theories
[ Jele]

Scalar-tensor theories, but why?
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ar-tensor theories

Scalar-tensor theories, but why?

Is there something special about scalar-tensor theories?




r-tensor theories

Scalar-tensor theories, but why?

Is there something special about scalar-tensor theories? NO, but:
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Scalar-tensor theories
0e0

Scalar-tensor theories, but why?

Is there something special about scalar-tensor theories? NO, but:

> They are the simplest modifications of gravity with a single scalar degree
of freedom (e.g. Brans-Dicke, Horndeski, beyond Horndeski, DHOST).

» They constitute limits of more complex fundamental theories:

Kaluza-Klein reducti .
e Lovelock —— 2 reCucHON, Horndeski

> String Theory predicts that the actual theory of gravity is a scalar—tensor the-
ory. The spin-2 graviton is accompanied by a spin-0 partner, the dilaton.
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Scalar-tensor theories
0e0

Scalar-tensor theories, but why?

Is there something special about scalar-tensor theories? NO, but:

> They are the simplest modifications of gravity with a single scalar degree
of freedom (e.g. Brans-Dicke, Horndeski, beyond Horndeski, DHOST).

» They constitute limits of more complex fundamental theories:
Kaluza-Klein reduction

® Lovelock —————————— Horndeski

> String Theory predicts that the actual theory of gravity is a scalar—tensor the-
ory. The spin-2 graviton is accompanied by a spin-0 partner, the dilaton.

Scalar-tensor theories are the simplest well-motivated departures from GR )

Theodoros Nakas (IBS) Black holes with primary r hair April 8, 2025



Scalar-tensor theories
ooe

Horndeski and beyond Horndeski theories

Horndeski gravity (1974)

1
Sulguns 9 = 1o [ dxv/=g{ L+ o+ L+ £}

L] =66, %), £ =-G(#,X)0¢, L] =Gi(éX)R+ Gux [(O9)’ = (VuV.u9)]

Gsx

£l = 6:(6, %Gy V9" ¢ = =X [([@9) — 3(09)(V, V)’ + 2AVuV,e)’] -

Here, X = — %8“ ¢0,, ¢ represents the kinetic term, Gix = dG;/dX, while
(VuVu9) = (VuVu ) (VHVY¢) and (Vo V. 8)° = (VW V. 8) (VY V) (VAVH ).

General disformal transformation

Euv = C(X, d)guv + D(X, ¢)au¢3v¢

Horndeski — Beyond Horndeski
Zuv = guv + D(X)0,u 0 b

Type | Type Il
Figure stolen from David Langlois [1811.06271/gr-qc]
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Solutions with primary scalar hair
®0000000000

Black holes with primary scalar hair

> Shift symmetric (¢ — ¢ + ¢) and Z, symmetric (¢ — —¢) beyond Horndeski theory:

Svrt [guv, @] = ﬁ “ d*xy/ —g{Gz(X) + G4(X)R+ Gax [(O¢)® — ¢, ]
+ F4(X)6uypg€a57a¢,u¢,a¢;l/ﬁ¢;ﬁ’y} )

dG; 1
Gix = ax’ O =0ud, Gy =Vuoop, X= _58u¢8u¢v
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Solutions with primary scalar hair
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Black holes with primary scalar hair

> Shift symmetric (¢ — ¢ + ¢) and Z, symmetric (¢ — —¢) beyond Horndeski theory:

S g 8 = —— [ a*xy/Zg{ Ga0) + GrOR+ Gx [(09)° = byrd™]

167 J
+ B(X)e 7P 1 16 abupbion |

dG; 1
Gix = di , Ou=0ud, G =Vpuoop, X= _*8u¢8“¢-
X 2 )
> We seek static, spherically symmetric and asymptotically flat solutions
2 2, dr 20492 1 «in2 2
ds® = —h(r) dt +m+r(dz9 + sin® ¥ dep*?) , o(t,r) = qt +(r).
r
.
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Solutions with primary scalar hair
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Black holes with primary scalar hair

> Shift symmetric (¢ — ¢ + ¢) and Z, symmetric (¢ — —¢) beyond Horndeski theory:

S g 8 = —— [ a*xy/Zg{ Ga0) + GrOR+ Gx [(09)° = byrd™]

167 J
+ B(X)e 7P 1 16 abupbion |

dG; 1
Gix = di , Ou=0ud, G =Vpuoop, X= _*8u¢8“¢-
X 2 )
> We seek static, spherically symmetric and asymptotically flat solutions
2 2, dr 20492 1 «in2 2
ds® = —h(r) dt +m+r(dz9 + sin® ¥ dep*?) , o(t,r) = qt +(r).
r
.

> The internal shift symmetry of the theory = a Noether current

:(3”)07070)}:> QSZ/*JO(qk

{J = ]}deu’ 3{# = =
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Solutions with primary scalar hair
O®000000000

Using the auxiliary function Z(X) = 2XGyx — Gy + 4X%Fj, the independent EOM are

f_ 9
— = 1
= 72 1)
2 qz’Yz
Z 2(G4Z 1— =0 2
(G )x+(4)x( zzZX) 5 (2)
2 / 2.2 2.2/
qr 2 q° gy Xr
2v: (hr— =) =—rGzZ—2GsZ (1 - —— 2L (2XGyx —Gi) . (3
7(’ ZX) re 4( 222X>+ zxz (XOx=C) . ()
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Solutions with primary scalar hair

O®000000000

Using the auxiliary function Z(X) = 2XGyx — Gy + 4X%Fj, the independent EOM are

f_ 9
— = 1
= 72 1)
2 qz’Yz
zZ 2(G4Z 1— =0 2
(G )x+(4)x( zzZX) 5 (2)
2 / 2.2 2.2/
qr 2 q° gy Xr
2v: (hr— =) =—rGzZ—2GsZ (1 - —— 2L (2XGyx —Gi) . (3
7(’ 2X) re 4( 222X>+ zxz (XOx=C) . ()

For homogeneous solutions (h = f), the above system of equations is integrable.
® Eq. (1) resultsin Z = ~.
® Assuming that G4(X) = X6, (X) + ¢, eq. (2) yields

2

X =

s 1
2 1+ (r/A)?°

® Eq. (3) now leads to

C 211 [
h(r) =1+ —+ <1+£> —Jrf—/rz(szZXsz)dr,
; " 5
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Solutions with primary scalar hair
OO0@00000000

Considering
oo

G(X) =D exX?, szt [en] = [P

n=0

one obtains

c ¢ A2 I & 2n q*/2 5 n 5 1
h(r) =1+ — 14+ — —c | — — n{l—— - oF | =1 - ————— | .
Q) +V+< +ﬁ,+:h u;) vt ZC{( J(www S R by

! n=1

At r — 400 one finds

h(r)=1+; [C-&-Aa‘Tﬁiw (1_@) <‘122>r(r()3>

ﬂ 2n 2n 2
28 &2 ¢\ s /\>s 1— 2\ 3n 1
+ — o | = - r —,—7+O(—) .
3y "Z=ICL' <2 (r 17% A2 s r2

For asymptotically flat solutions, it is necessary to have ( = —y = 1, ¢) = 0,and ¢ > g
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Solutions with primary scalar hair
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Solutions with primary scalar hair

O000@000000

> Model functions of the theory:

am

GX)=——X G(X)=1—- —X F(X) =
(0 =~ X G0 =1- DX, RO =1,
7 and X coupling constants, with dimensions (length)* and (length), respectively.
v
> Spacetime geometry:
2 2 dr? 2 2 e 2
ds* = —f(r)dt" + — + r(d¥° + sin" 9 dep") ,
f(r)
2 4 [ ™/2 — arctan(r/\) 1 i|
Sil= s
F) ;T [ r/x 1+ (r/0)?
”
> Scalar field, kinetic term, and scalar charge/hair:
dn =atu), x= L rp= L [l - L]
' ’ 1+ (r/A)?’ f2(r) 1+ (r/A)?
2q 16
= (—-—50x,0,0,0) , s:/ = nAg.
7 ( T (/) O ) Q *J 5 i
» The solution has two independent free parameters: , q (primary scalar hair).

For ¢ = 0 — {GR limit + Schwarzschild solution}.
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Solutions with primary scalar hair

O0000e00000

Asymptotically the solution behaves like RN but with the scalar playing the role of electric
charge

2M A2 1
f(’ﬁ+°0):1*7+27lq4§+0(;) ;

while close to the singularity we have

2M — mng*h/2  2ngtr?

4
f(r—0)=1 — +0().
r 3
2
Y I —
’ 7
= e ng' = 150 = -
= 05 ! = 7 Y A
" : cme= gt= =50 I. Ll cmem opgt=37, C>0
10 ' gt = -5 ! ng' =45, C<0
.o A N
15 ] — =0 1 N — ng'=7, C<0
1 ! .
2 1 10 100 1000 ““o01 010 1 10 100 1000
r/(2M) r/(2M)

Left: n < 0, single-horizon BH more sparse than Schwarzschild. Right: n > 0,
multiple-horizon BH more compact than Schwarzschild or naked singularities.
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Solutions with primary scalar hair

O00000e0000

For M = mnq*)\/4, the central singularity disappears altogether and all curvature invariants
become infinitely regular:

Fr) =1 4M [arctan(r/\) 1
r)=1—— -
A r/A 14+ (r/A)?
1.0]
0.8 1
T 06 b
= “\ : M/A=6.25 =
= o vyt = ]
. ; c=s= M/A=5
10 M/X=10/3 02 1
B M/A=1/3
15 : M/A=222
2. -0
0.01 0.10 10 100 1000

1
r/(2M)

r/(2M)

Left: Regular BH solutions. Right: Solitonic solutions.
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Solutions with primary scalar hair
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Solutions with primary scalar hair

00000000800

v

Model functions of the theory:

2
G = X G =140, BX) = —nVX,

n and A coupling constants, with dimensions (length)® and (length), respectively.

> Spacetime geometry:

2
d¢ = —f(r)dit + ]% 4 A(d9? + sin? 9 dp?)

_ 2 V2ng® A r
f=1-=—-— 7<lf(r2+>\2)3/2>
v
> Scalar field, kinetic term, and scalar charge/hair:
2 2
q/2 iz 4 f(r) }
= X=—17/" = _ S\
sen=a+v), x= 0o wor- L - L0
" 2q ) / 207,
=(———Gx,0,0,0), Q= =—"——niq'.
¥ ( T (/) Q *J 3z
v
» The solution has two independent free parameters: , q (primary scalar hair).

For ¢ = 0 — {GR limit + Schwarzschild solution}.
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Solutions with primary scalar hair
00000000080

Asymptotically the solution behaves like the Schwarzschild solution but with a small correction

from the scalar hair
2M P A3 1
f(r%+oo):17—f—nq —+(’)<—) ,
’

while close to the singularity we have

_2MAV2ngN/3 Vang P

f(r—0)=1 oY
r 3 N2
\
s \
\
\\ M_ n|
P it — N—— e = \ 7 A 3V2
= = \ /
— =0 - \ —_— =1
5_ a5 \ 5
[ Y 0 =3 o \\ |l ng® = ~2.49
=5 / ng° = =7.59
- \ i
——= =10 -15 \, ——= ¢’ = -1420
o 1 10 100 001 0.10 1 10 100 1000
r/(2M) r/(2M)

Left: n > 0, BH solutions with two horizons. Right: 77 < 0, Regular BH and solitonic
solutions.
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Solutions with primary scalar hair

0000000000 e

Bardeen solution in beyond Horndeski

5
Especially in the regular case, where % =— ;—\%, the resulting solution is the Bardeen:

d 2
ds? = —f(r)de + f—(rr) + r*(d¥? + sin® ¥ dg?),
2Mr?
f(r) =1—- m , Mis a free parameter.

v
Bardeen from non-linear magnetic monopole (. Ayon-Beato, A. Garcia [0009077/gr-qc])

5/2
1 3M V2N F
S=— d*x\/—g[R — 4L(F LF)=" | ————
1on ) ARV TER— L), L) = 5 <1+\/m> :

F=-F*Fu, Fu =25,55xsindg.

ko]

NN

In this case, the parameter M is a coupling constant and therefore not a free parameter.

The beyond Horndeski gravity constitutes a more natural framework to describe the
Bardeen solution. J
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Conclusions
[ ele}

Conclusions:

»> We have demonstrated a generic method that one can use to construct
compact-object solutions (single or multiple-horizon black holes, regular
black holes, and solitons) with primary scalar hair in shift and Z, symmet-
ric beyond Horndeski theory.
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Conclusions
[ ele}

Conclusions:

»> We have demonstrated a generic method that one can use to construct
compact-object solutions (single or multiple-horizon black holes, regular
black holes, and solitons) with primary scalar hair in shift and Z, symmet-
ric beyond Horndeski theory.

The key ingredients of the method are:

® A linearly time-dependent scalar field that carries the scalar hair.

® The proportionality of the model functions G4(X) o< Gz(X) and their power ex-
pansion

o0
G2(X) :ZCEX%7 seZt.
n=0
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Conclusions
[ ele}

Conclusions:

»> We have demonstrated a generic method that one can use to construct
compact-object solutions (single or multiple-horizon black holes, regular
black holes, and solitons) with primary scalar hair in shift and Z, symmet-
ric beyond Horndeski theory.

The key ingredients of the method are:

® A linearly time-dependent scalar field that carries the scalar hair.

® The proportionality of the model functions G4(X) o< Gz(X) and their power ex-
pansion

G2(X) :ZCEX%7 seZt.
n=0 :
> We have identified the scalar charge/hair accompanying the solutions through

the Noether current that emanates from the internal shift symmetry of the the-
ory.

{J_]deuu ]Mzi _(ff't)oyozo)}:> Qs:/*JO(qk
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Conclusions
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Conclusions:

»> We have demonstrated a generic method that one can use to construct
compact-object solutions (single or multiple-horizon black holes, regular
black holes, and solitons) with primary scalar hair in shift and Z, symmet-
ric beyond Horndeski theory.

The key ingredients of the method are:

® A linearly time-dependent scalar field that carries the scalar hair.

® The proportionality of the model functions G4(X) o< Gz(X) and their power ex-
pansion

G2(X) :ZCEX%7 seZt.
n=0 :
> We have identified the scalar charge/hair accompanying the solutions through

the Noether current that emanates from the internal shift symmetry of the the-
ory.

_ L s
Vel 6(8u9)

{J_]deuu ]H _(}t,0,0,0)} = Qs:/*JO(qk

> The beyond Horndeski gravity constitutes a more natural framework to de-
scribe the Bardeen solution.
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Conclusions
(o] lo}

Future Directions:

> To consider such black-hole solutions as realistic astrophysical objects, they
should be proven stable under perturbations. Thus, the stability analysis is a
crucial next step.
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Conclusions
o] o}

Future Directions:

> To consider such black-hole solutions as realistic astrophysical objects, they
should be proven stable under perturbations. Thus, the stability analysis is a
crucial next step.

> Study the quasinormal modes of black holes with primary scalar hair.
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Conclusions
o] o}

Future Directions:

> To consider such black-hole solutions as realistic astrophysical objects, they
should be proven stable under perturbations. Thus, the stability analysis is a
crucial next step.

> Study the quasinormal modes of black holes with primary scalar hair.

> Isit possible to generalize the method to construct rotating black-hole solutions
with primary scalar hair?
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Conclusions
ooe

Visualization

NASA’s Goddard Space Flight Center/Jeremy Schnittman and Brian P. Powell
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