Theodoros Nakas

Cosmology, Gravity, Astroparticle Physics Group, Center for Theoretical Physics of the Universe, Institute for Basic Science IBS CTPU-CGA

Prague Spring 2025: CAS - IBS CTPU-CGA - ISCT Workshop in Cosmology, Gravitation and Particle Physics

April 7-12, 2025

Collaborators: A. Bakopoulos, C. Charmousis, N. Lecoeur, P. Kanti [2310.11919/gr-qc], N. Chatzifotis [2312.17198/gr-qc] Motivation

Scalar-tensor theories

Solutions with primary scalar hair

Event Horizon Telescope (EHT)

- Goal: Direct observation of black holes' photon ring.
- Major Achievements: First-ever image of a black hole (M87*) in 2019.
- Nobel Prize in Physics 2020: Roger Penrose, Reinhard Genzel, and Andrea Ghez.

LIGO/Virgo/KAGRA

- Goal: Detecting gravitational waves from compact-object mergers.
- Major Achievements: First detection of black hole-black hole merger (GW150914, 2015).
- Nobel Prize in Physics 2017: Rainer Weiss, Barry C. Barish, and Kip S. Thorne.

Black holes have no hair!

GR solutions are special

In General Relativity, every black hole is characterized by only three observable quantities/"hairs":

- Mass (M)
- Angular Momentum/Spin (J)
- Electric charge (Q_e)

Two black holes with the same values for these parameters are completely indistinguishable.

No(-scalar)-hair theorems

- J. D. Bekenstein, 1972 & 1995
- J. D. Bekenstein [9605059/gr-qc] (short review)
- C. Herdeiro, E. Radu [1504.08209/gr-qc] (review)

More often than not, these theorems can be evaded in Einstein-scalar-Gauss-Bonnet gravity or Horndeski and beyond Horndeski theories. Scalar-tensor theories

Solutions with primary scalar hair

Black holes have ∞ hair!

In gravitational theories beyond GR, black holes might acquire additional properties, depending on the theoretical framework.

Scalar-tensor (ST) theories

For static and asymptotically flat black-hole solutions in ST theories:

- Secondary hair: $g_{\mu\nu} = g_{\mu\nu}(M; x^{\lambda}), \phi = \phi(M; x^{\lambda})$ (no additional information)
- Primary hair: $g_{\mu\nu} = g_{\mu\nu}(M, q; x^{\lambda}),$ $\phi = \phi(M, q; x^{\lambda})$

(additional information linked to the existence of the scalar field)

In [2310.11919/gr-qc] we presented the first solution of a black hole with primary scalar hair in a single field scalar-tensor theory (beyond Horndeski gravity).

In [2312.17198/gr-qc], we generalized the method and obtained a class of different solutions with primary scalar hair.

Bocharova-Bronnikov-Melnikov-Bekenstein solution (1970s)

A scalar-tensor (ST) theory with a conformally coupled scalar field

$$S[g_{\mu\nu},\phi] = \int_{\mathcal{M}} \mathrm{d}^4 x \sqrt{-g} \bigg(\frac{R}{16\pi} - \frac{1}{12} \phi^2 R - \frac{1}{2} \partial_\lambda \phi \, \partial^\lambda \phi \bigg)$$

Invariance of the EOM of ϕ under the conformal transformation:

$$\tilde{g}_{\mu\nu} = \Omega^2 g_{\mu\nu}, \quad \tilde{\phi} = \Omega^{-1} \phi$$

The BBMB solution

• There exist static and spherically symmetric black-hole solutions

$$\mathrm{d}s^2 = -\left(1 - \frac{M}{r}\right)^2 \mathrm{d}t^2 + \frac{\mathrm{d}r^2}{\left(1 - \frac{M}{r}\right)^2} + r^2(\mathrm{d}\vartheta^2 + \sin^2\vartheta\,\mathrm{d}\varphi^2)\,.$$

The profile of the scalar field is non-trivial

$$\phi = \sqrt{\frac{3}{4\pi}} \frac{M}{r - M} \,.$$

The black holes possess secondary hair.

pril 8, 2025

Scalar-tensor theories

Solutions with primary scalar hair

Scalar-tensor theories, but why?

Theodoros Nakas (IBS)

Is there something special about scalar-tensor theories?

Is there something special about scalar-tensor theories? NO, but:

Is there something special about scalar-tensor theories? NO, but:

- ▶ They are the **simplest modifications of gravity** with a single scalar degree of freedom (e.g. Brans-Dicke, Horndeski, beyond Horndeski, DHOST).
- ► They constitute limits of more complex fundamental theories:
 - Lovelock $\xrightarrow{\text{Kaluza-Klein reduction}}$ Horndeski
- String Theory predicts that the actual theory of gravity is a scalar-tensor theory. The spin-2 graviton is accompanied by a spin-0 partner, the dilaton.

Is there something special about scalar-tensor theories? NO, but:

- They are the simplest modifications of gravity with a single scalar degree of freedom (e.g. Brans-Dicke, Horndeski, beyond Horndeski, DHOST).
- ► They constitute limits of more complex fundamental theories:
 - Lovelock $\xrightarrow{\text{Kaluza-Klein reduction}}$ Horndeski
- String Theory predicts that the actual theory of gravity is a scalar-tensor theory. The spin-2 graviton is accompanied by a spin-0 partner, the dilaton.

Scalar-tensor theories are the simplest well-motivated departures from GR

Horndeski and beyond Horndeski theories

Horndeski gravity (1974)

$$\begin{split} S_{H}[g_{\mu\nu},\phi] &= \frac{1}{16\pi} \int_{\mathcal{M}} d^{4}x \sqrt{-g} \left\{ \mathcal{L}_{2}^{H} + \mathcal{L}_{3}^{H} + \mathcal{L}_{4}^{H} + \mathcal{L}_{5}^{H} \right\} ,\\ \mathcal{L}_{2}^{H} &= G_{2}(\phi,X) \,, \quad \mathcal{L}_{3}^{H} = -G_{3}(\phi,X) \Box \phi \,, \quad \mathcal{L}_{4}^{H} = G_{4}(\phi,X)R + G_{4X} \left[(\Box \phi)^{2} - (\nabla_{\mu} \nabla_{\nu} \phi)^{2} \right] \,,\\ \mathcal{L}_{5}^{H} &= G_{5}(\phi,X)G_{\mu\nu} \nabla^{\mu} \nabla^{\nu} \phi - \frac{G_{5X}}{6} \left[(\Box \phi)^{3} - 3(\Box \phi)(\nabla_{\mu} \nabla_{\nu} \phi)^{2} + 2(\nabla_{\mu} \nabla_{\nu} \phi)^{3} \right] \,. \end{split}$$

Here,
$$X = -\frac{1}{2}\partial^{\mu}\phi\partial_{\mu}\phi$$
 represents the kinetic term, $G_{iX} \equiv dG_{i}/dX$, while
 $(\nabla_{\mu}\nabla_{\nu}\phi)^{2} \equiv (\nabla_{\mu}\nabla_{\nu}\phi)(\nabla^{\mu}\nabla^{\nu}\phi)$ and $(\nabla_{\mu}\nabla_{\nu}\phi)^{3} \equiv (\nabla_{\mu}\nabla_{\nu}\phi)(\nabla^{\nu}\nabla^{\lambda}\phi)(\nabla_{\lambda}\nabla^{\mu}\phi)$.

A. Bakopoulos, C. Charmousis, N. Lecoeur, P. Kanti, T.N., [2310.11919/gr-qc] A. Bakopoulos, N. Chatzifotis, T.N., [2312.17198/gr-qc]

Shift symmetric ($\phi \rightarrow \phi + c$) and Z_2 symmetric ($\phi \rightarrow -\phi$) beyond Horndeski theory:

$$\begin{split} S_{bH}\left[g_{\mu\nu},\phi\right] &= \frac{1}{16\pi} \int_{\mathcal{M}} \mathrm{d}^{4}x \sqrt{-g} \Big\{ G_{2}(X) + G_{4}(X)R + G_{4X}\left[\left(\Box\phi\right)^{2} - \phi_{;\mu\nu}\phi^{;\mu\nu}\right] \\ &+ F_{4}(X)\epsilon^{\mu\nu\rho\sigma}\epsilon^{\alpha\beta\gamma}{}_{\sigma}\phi_{,\mu}\phi_{,\alpha}\phi_{;\nu\beta}\phi_{;\rho\gamma} \Big\}, \\ G_{iX} &\equiv \frac{\mathrm{d}G_{i}}{\mathrm{d}X}, \quad \phi_{,\mu} \equiv \partial_{\mu}\phi, \quad \phi_{;\mu\nu} \equiv \nabla_{\mu}\partial_{\nu}\phi, \quad X \equiv -\frac{1}{2}\partial_{\mu}\phi\,\partial^{\mu}\phi\,. \end{split}$$

A. Bakopoulos, C. Charmousis, N. Lecoeur, P. Kanti, T.N., [2310.11919/gr-qc] A. Bakopoulos, N. Chatzifotis, T.N., [2312.17198/gr-qc]

Shift symmetric ($\phi \rightarrow \phi + c$) and Z_2 symmetric ($\phi \rightarrow -\phi$) beyond Horndeski theory:

$$\begin{split} S_{bH}\left[g_{\mu\nu},\phi\right] &= \frac{1}{16\pi} \int_{\mathcal{M}} \mathrm{d}^{4}x \sqrt{-g} \Big\{ G_{2}(X) + G_{4}(X)R + G_{4X}\left[(\Box\phi)^{2} - \phi_{;\mu\nu}\phi^{;\mu\nu} \right] \\ &+ F_{4}(X)\epsilon^{\mu\nu\rho\sigma}\epsilon^{\alpha\beta\gamma}{}_{\sigma}\phi_{,\mu}\phi_{,\alpha}\phi_{;\nu\beta}\phi_{;\rho\gamma} \Big\} \,, \\ G_{iX} &\equiv \frac{\mathrm{d}G_{i}}{\mathrm{d}X} \,, \quad \phi_{,\mu} \equiv \partial_{\mu}\phi \,, \quad \phi_{;\mu\nu} \equiv \nabla_{\mu}\partial_{\nu}\phi \,, \quad X \equiv -\frac{1}{2}\partial_{\mu}\phi \,\partial^{\mu}\phi \,. \end{split}$$

We seek static, spherically symmetric and asymptotically flat solutions

$$\mathrm{d}s^2 = -h(r)\,\mathrm{d}t^2 + \frac{\mathrm{d}r^2}{f(r)} + r^2(\mathrm{d}\vartheta^2 + \sin^2\vartheta\,\mathrm{d}\varphi^2)\,, \qquad \phi(t,r) = qt + \psi(r)\,.$$

A. Bakopoulos, C. Charmousis, N. Lecoeur, P. Kanti, T.N., [2310.11919/gr-qc] A. Bakopoulos, N. Chatzifotis, T.N., [2312.17198/gr-gc]

Shift symmetric ($\phi \rightarrow \phi + c$) and \mathbb{Z}_2 symmetric ($\phi \rightarrow -\phi$) beyond Horndeski theory:

$$\begin{split} S_{bH}\left[g_{\mu\nu},\phi\right] &= \frac{1}{16\pi} \int_{\mathcal{M}} \mathrm{d}^{4}x \sqrt{-g} \Big\{ G_{2}(X) + G_{4}(X)R + G_{4X}\left[(\Box\phi)^{2} - \phi_{;\mu\nu}\phi^{;\mu\nu} \right] \\ &+ F_{4}(X)\epsilon^{\mu\nu\rho\sigma}\epsilon^{\alpha\beta\gamma}{}_{\sigma}\phi_{,\mu}\phi_{,\alpha}\phi_{;\nu\beta}\phi_{;\rho\gamma} \Big\} \,, \\ G_{iX} &\equiv \frac{\mathrm{d}G_{i}}{\mathrm{d}X} \,, \quad \phi_{,\mu} \equiv \partial_{\mu}\phi \,, \quad \phi_{;\mu\nu} \equiv \nabla_{\mu}\partial_{\nu}\phi \,, \quad X \equiv -\frac{1}{2}\partial_{\mu}\phi \,\partial^{\mu}\phi \,. \end{split}$$

We seek static, spherically symmetric and asymptotically flat solutions

$$\mathrm{d}s^2 = -h(r)\,\mathrm{d}t^2 + \frac{\mathrm{d}r^2}{f(r)} + r^2(\mathrm{d}\vartheta^2 + \sin^2\vartheta\,\mathrm{d}\varphi^2)\,, \qquad \phi(t,r) = qt + \psi(r)\,.$$

► The internal shift symmetry of the theory ⇒ a Noether current

$$\left\{\mathbf{J} = \mathfrak{J}_{\mu} dx^{\mu} \,, \quad \mathfrak{J}^{\mu} = \frac{1}{\sqrt{|g|}} \frac{\delta S}{\delta(\partial_{\mu} \phi)} = (\mathfrak{J}^{t}, 0, 0, 0) \right\} \Rightarrow \boxed{\boldsymbol{\mathcal{Q}}_{s} = \int \star \mathbf{J} \propto \boldsymbol{q}^{k}}$$

Theodoros Nakas (IBS)

tivation	Black holes have (no) hair!	Scalar-tensor theories
	000	000

Using the auxiliary function $Z(X) \equiv 2XG_{4X} - G_4 + 4X^2F_4$, the independent EOM are

$$\frac{f}{h} = \frac{\gamma^2}{Z^2} \,, \tag{1}$$

$$r^{2}(G_{2}Z)_{X} + 2(G_{4}Z)_{X}\left(1 - \frac{q^{2}\gamma^{2}}{2Z^{2}X}\right) = 0, \qquad (2)$$

$$2\gamma^{2}\left(hr - \frac{q^{2}r}{2X}\right)' = -r^{2}G_{2}Z - 2G_{4}Z\left(1 - \frac{q^{2}\gamma^{2}}{2Z^{2}X}\right) + \frac{q^{2}\gamma^{2}X'r}{ZX^{2}}\left(2XG_{4X} - G_{4}\right).$$
 (3)

Motivation O	Black holes have (no) hair! 000	Scalar-tensor theories	Solutions with primary scalar ha

Using the auxiliary function $Z(X) \equiv 2XG_{4X} - G_4 + 4X^2F_4$, the independent EOM are

$$\frac{f}{h} = \frac{\gamma^2}{Z^2} \,, \tag{1}$$

$$r^{2}(G_{2}Z)_{X} + 2(G_{4}Z)_{X}\left(1 - \frac{q^{2}\gamma^{2}}{2Z^{2}X}\right) = 0, \qquad (2)$$

$$2\gamma^{2}\left(hr - \frac{q^{2}r}{2X}\right)' = -r^{2}G_{2}Z - 2G_{4}Z\left(1 - \frac{q^{2}\gamma^{2}}{2Z^{2}X}\right) + \frac{q^{2}\gamma^{2}X'r}{ZX^{2}}\left(2XG_{4X} - G_{4}\right).$$
 (3)

For **homogeneous solutions** (h = f), the above system of equations is **integrable**.

- Eq. (1) results in $Z = \gamma$.
- Assuming that $G_4(X) = \frac{\lambda^2}{2}G_2(X) + \zeta$, eq. (2) yields

$$X = \frac{q^2}{2} \frac{1}{1 + (r/\lambda)^2} \,.$$

• Eq. (3) now leads to

$$h(r) = 1 + \frac{C}{r} + \left(1 + \frac{\zeta}{\gamma}\right)\frac{r^2}{\lambda^2} + \frac{1}{\gamma}\frac{1}{r}\int r^2(G_2 - 2XG_{2X})\,\mathrm{d}r\,.$$

Motivation O	Black holes have (no) hair!	Scalar-tensor theories	Solutions with primary scalar hair	Conclusions 000

Considering

$$G_{2}(X) = \sum_{n=0}^{\infty} c_{\frac{n}{s}} X^{\frac{n}{s}}, \ s \in \mathbb{Z}^{+}, \ [c_{\frac{n}{s}}] = [L]^{2(\frac{n}{s}-1)}$$

one obtains

$$h(r) = 1 + \frac{C}{r} + \left(1 + \frac{\zeta}{\gamma} + \frac{\lambda^2}{3\gamma} c_0\right) \frac{r^2}{\lambda^2} + \frac{r^2}{3\gamma} \sum_{n=1}^{\infty} c_{\frac{n}{s}} \left(1 - \frac{2n}{s}\right) \left(\frac{q^2/2}{1 + (r/\lambda)^2}\right)^{\frac{n}{s}} {}_2F_1\left(\frac{n}{s}, 1; \frac{5}{2}; \frac{1}{1 + \lambda^2/r^2}\right) \,.$$

At $r \to +\infty$ one finds

$$\begin{split} h(r) &= 1 + \frac{1}{r} \left[C + \frac{\lambda^3 \sqrt{\pi}}{4\gamma} \sum_{n=1}^{\infty} c_{\frac{n}{s}} \left(1 - \frac{2n}{s} \right) \left(\frac{q^2}{2} \right)^{\frac{n}{s}} \frac{\Gamma\left(\frac{n}{s} - \frac{3}{2}\right)}{\Gamma\left(\frac{n}{s}\right)} \right] + \left(1 + \frac{\zeta}{\gamma} + \frac{\lambda^2}{3\gamma} c_0 \right) \frac{r^2}{\lambda^2} \\ &+ \frac{2\beta}{3\gamma} \sum_{n=1}^{\infty} c_{\frac{n}{s}} \left(\frac{q^2}{2} \right)^{\frac{n}{s}} \left(\frac{\lambda}{r} \right)^{\frac{2n}{s}} \left[\left(\frac{1 - \frac{2n}{3s}}{1 - \frac{2n}{3s}} \right) \frac{r^2}{\lambda^2} - \frac{3n}{s} + \mathcal{O}\left(\frac{1}{r^2} \right) \right] \,. \end{split}$$

For asymptotically flat solutions, it is necessary to have $\zeta = -\gamma = 1$, $c_0 = 0$, and $\frac{n}{s} > \frac{3}{2}$.

1st Solution
$G_2(X)=\sum_{n=0}^\infty c_{rac{n}{s}}X^{rac{n}{s}},s\in\mathbb{Z}^+$
$c_{rac{n}{s}}=0, \hspace{1em} orall rac{n}{s} eq 2$
$c_2=-rac{8\eta}{3\lambda^2}$

Motivation	Black	holes	have	hair

Model functions of the theory:

$$G_2(X) = -rac{8\eta}{3\lambda^2}X^2 \quad G_4(X) = 1 - rac{4\eta}{3}X^2 \,, \quad F_4(X) = \eta \,,$$

 η and λ coupling constants, with dimensions (length) 4 and (length), respectively.

Spacetime geometry:

$$\begin{split} \mathrm{d}s^2 &= -f(r)\,\mathrm{d}t^2 + \frac{\mathrm{d}r^2}{f(r)} + r^2(\mathrm{d}\vartheta^2 + \sin^2\vartheta\,\mathrm{d}\varphi^2)\,,\\ f(r) &= 1 - \frac{2M}{r} + \eta q^4 \left[\frac{\pi/2 - \arctan(r/\lambda)}{r/\lambda} + \frac{1}{1 + (r/\lambda)^2}\right]\,. \end{split}$$

Scalar field, kinetic term, and scalar charge/hair:

$$\begin{split} \phi(t,r) &= qt + \psi(r) \,, \quad X = \frac{q^2/2}{1 + (r/\lambda)^2} \,, \quad \left[\psi'(r)\right]^2 = \frac{q^2}{f^2(r)} \left[1 - \frac{f(r)}{1 + (r/\lambda)^2}\right] \,, \\ \mathcal{J}^{\mu} &= \left(-\frac{2q}{1 + (r/\lambda)^2} G_{2X}, 0, 0, 0\right) \,, \quad \mathcal{Q}_s = \int \star \mathbf{J} = \frac{16\pi^2}{3} \eta \lambda q^3 \,. \end{split}$$

The solution has **two independent free parameters**: M (ADM mass), q (primary scalar hair). For $q = 0 \rightarrow \{GR \text{ limit} + \text{Schwarzschild solution}\}.$

Motivation	Black holes have (no) hair!	Scalar-tensor theories	Solutions with primary scalar hair	Conclusion
			0000000000	

Asymptotically the solution behaves like RN but with the scalar playing the role of electric charge

$$f(r \to +\infty) = 1 - \frac{2M}{r} + 2\eta q^4 \frac{\lambda^2}{r^2} + \mathcal{O}\left(\frac{1}{r^4}\right),$$

while close to the singularity we have

$$f(r \to 0) = 1 - rac{2M - \pi \eta q^4 \lambda/2}{r} - rac{2\eta q^4 r^2}{3\lambda^2} + \mathcal{O}(r^4) \, .$$

Left: $\eta < 0$, single-horizon BH more sparse than Schwarzschild. **Right**: $\eta > 0$, multiple-horizon BH more compact than Schwarzschild or naked singularities.

Theodoros Nakas (IBS)

Black holes with primary scalar hair

Motivation O	Black holes have (no) hair! 000	Scalar-tensor theories	Solutions with primary scalar hair	Conclusions 000

For $M = \pi \eta q^4 \lambda/4$, the central singularity disappears altogether and all curvature invariants become infinitely regular:

$$f(r) = 1 - \frac{4M}{\pi\lambda} \left[\frac{\arctan(r/\lambda)}{r/\lambda} - \frac{1}{1 + (r/\lambda)^2} \right].$$

Left: Regular BH solutions. Right: Solitonic solutions.

2nd Solution
$G_2(X)=\sum_{n=0}^\infty c_{rac{n}{s}}X^{rac{n}{s}},s\in\mathbb{Z}^+$
$c_{rac{n}{s}}=0, \hspace{1em} orall rac{n}{s} eq rac{5}{2}$
$c_{rac{5}{2}}=rac{2\eta}{\lambda^2}$

Model functions of the theory:

$$G_2(X) = rac{2\eta}{\lambda^2} X^{5/2} \quad G_4(X) = 1 + \eta X^{5/2} \,, \quad F_4(X) = -\eta \sqrt{X} \,,$$

 η and λ coupling constants, with dimensions (length) 5 and (length), respectively.

Spacetime geometry:

$$ds^{2} = -f(r) dt^{2} + \frac{dr^{2}}{f(r)} + r^{2} (d\vartheta^{2} + \sin^{2}\vartheta d\varphi^{2}) ,$$

$$f(r) = 1 - \frac{2M}{r} - \frac{\sqrt{2} \eta q^{5}}{3} \frac{\lambda}{r} \left(1 - \frac{r^{3}}{(r^{2} + \lambda^{2})^{3/2}} \right) .$$

Scalar field, kinetic term, and scalar charge/hair:

$$\begin{split} \phi(t,r) &= qt + \psi(r) \,, \quad X = \frac{q^2/2}{1 + (r/\lambda)^2} \,, \quad \left[\psi'(r)\right]^2 = \frac{q^2}{f^2(r)} \left[1 - \frac{f(r)}{1 + (r/\lambda)^2}\right] \,, \\ \mathfrak{f}^\mu &= \left(-\frac{2q}{1 + (r/\lambda)^2} G_{2X}, 0, 0, 0\right) \,, \quad \mathcal{Q}_{\mathfrak{s}} = \int \star \mathbf{J} = -\frac{20\pi}{3\sqrt{2}} \eta \lambda q^4 \,. \end{split}$$

The solution has **two independent free parameters**: M (ADM mass), q (primary scalar hair). For $q = 0 \rightarrow \{GR \text{ limit} + \text{Schwarzschild solution}\}.$ Asymptotically the solution behaves like the Schwarzschild solution but with a small correction from the scalar hair

$$f(r \to +\infty) = 1 - \frac{2M}{r} - \frac{\eta q^5}{\sqrt{2}} \frac{\lambda^3}{r^3} + \mathcal{O}\left(\frac{1}{r^4}\right) \,,$$

while close to the singularity we have

$$f(r o 0) = 1 - rac{2M + \sqrt{2} \, \eta q^5 \lambda/3}{r} - rac{\sqrt{2} \, \eta q^5}{3} rac{r^2}{\lambda^2} + \mathcal{O}(r^4) \, .$$

Left: $\eta >$ 0, BH solutions with two horizons. Right: $\eta <$ 0, Regular BH and solitonic solutions.

Theodoros Nakas (IBS)	
-----------------------	--

ration Black holes have (no) hair! Scalar

Scalar-tensor theories

Solutions with primary scalar hair

Bardeen solution in beyond Horndeski

Especially in the regular case, where $\frac{M}{\lambda} = -\frac{\eta q^5}{3\sqrt{2}}$, the resulting solution is the Bardeen:

$$\mathrm{d}s^2 = -f(r)\,\mathrm{d}t^2 + \frac{\mathrm{d}r^2}{f(r)} + r^2(\mathrm{d}\vartheta^2 + \sin^2\vartheta\,\mathrm{d}\varphi^2)\,,$$

 $f(r) = 1 - rac{2Mr^2}{(r^2 + \lambda^2)^{3/2}}$, *M* is a free parameter.

Bardeen from non-linear magnetic monopole (E. Ayon-Beato, A. Garcia [0009077/gr-qc])

$$\begin{split} S &= \frac{1}{16\pi} \int_{\mathcal{M}} \mathrm{d}^4 x \sqrt{-g} [R - 4\mathcal{L}(\mathcal{F})] \,, \quad \mathcal{L}(\mathcal{F}) = \frac{3M}{\lambda^3} \left(\frac{\sqrt{2\lambda^2 \mathcal{F}}}{1 + \sqrt{2\lambda^2 \mathcal{F}}} \right)^{5/2} \,, \\ \mathcal{F} &\equiv \frac{1}{4} F^{\mu\nu} F_{\mu\nu} \,, \quad F_{\mu\nu} = 2\delta^\vartheta_{[\mu} \delta^\varphi_{\nu]} \lambda \sin \vartheta \,. \end{split}$$

In this case, the parameter M is a coupling constant and therefore not a free parameter.

The beyond Horndeski gravity constitutes a more natural framework to describe the Bardeen solution.

Theodoros Nakas (IBS)

Black holes with primary scalar hair

Motivation O	Black holes have (no) hair! 000	Scalar-tensor theories	Solutions with primary scalar hair	Conclusions ●00

▶ We have demonstrated a generic method that one can use to construct compact-object solutions (single or multiple-horizon black holes, regular black holes, and solitons) with primary scalar hair in shift and Z₂ symmetric beyond Horndeski theory.

Motivation	Black holes have (no) hair!	Scalar-tensor theories	Solutions with

▶ We have demonstrated a generic method that one can use to construct compact-object solutions (single or multiple-horizon black holes, regular black holes, and solitons) with primary scalar hair in shift and Z₂ symmetric beyond Horndeski theory.

The key ingredients of the method are:

- A linearly time-dependent scalar field that carries the scalar hair.
- The proportionality of the model functions $G_4(X) \propto G_2(X)$ and their power expansion

$$G_2(X) = \sum_{n=0}^{\infty} c_{\frac{n}{s}} X^{\frac{n}{s}}, \ s \in \mathbb{Z}^+$$

▶ We have demonstrated a generic method that one can use to construct compact-object solutions (single or multiple-horizon black holes, regular black holes, and solitons) with primary scalar hair in shift and Z₂ symmetric beyond Horndeski theory.

The key ingredients of the method are:

- A linearly time-dependent scalar field that carries the scalar hair.
- The proportionality of the model functions $G_4(X) \propto G_2(X)$ and their power expansion

$$G_2(X) = \sum_{n=0}^{\infty} c_{\frac{n}{s}} X^{\frac{n}{s}}, \ s \in \mathbb{Z}^+$$

We have identified the scalar charge/hair accompanying the solutions through the Noether current that emanates from the internal shift symmetry of the theory.

$$\left\{\mathbf{J} = \mathfrak{J}_{\mu} dx^{\mu} \,, \quad \mathfrak{J}^{\mu} = \frac{1}{\sqrt{|g|}} \frac{\delta S}{\delta(\partial_{\mu} \phi)} = (\mathfrak{J}^{t}, 0, 0, 0) \right\} \Rightarrow \boxed{\boldsymbol{\mathcal{Q}}_{s} = \int \star \mathbf{J} \propto \boldsymbol{q}^{k}}$$

▶ We have demonstrated a generic method that one can use to construct compact-object solutions (single or multiple-horizon black holes, regular black holes, and solitons) with primary scalar hair in shift and Z₂ symmetric beyond Horndeski theory.

The key ingredients of the method are:

- A linearly time-dependent scalar field that carries the scalar hair.
- The proportionality of the model functions $G_4(X) \propto G_2(X)$ and their power expansion

$$G_2(X) = \sum_{n=0}^{\infty} c_{\frac{n}{s}} X^{\frac{n}{s}}, \ s \in \mathbb{Z}^+$$

We have identified the scalar charge/hair accompanying the solutions through the Noether current that emanates from the internal shift symmetry of the theory.

$$\left\{\mathbf{J} = \mathcal{J}_{\mu} dx^{\mu} , \quad \mathcal{J}^{\mu} = \frac{1}{\sqrt{|g|}} \frac{\delta S}{\delta(\partial_{\mu} \phi)} = (\mathcal{J}^{t}, 0, 0, 0) \right\} \Rightarrow \boxed{\boldsymbol{\mathcal{Q}}_{s} = \int \star \mathbf{J} \propto \boldsymbol{q}^{k}}$$

The beyond Horndeski gravity constitutes a more natural framework to describe the Bardeen solution.

Theodoros Nakas (IBS)

Motivation	Black holes have (no) hair!	Scalar-tensor theories	Solutions with primary scalar hair	Conclusions
O	000		0000000000	000

Future Directions:

To consider such black-hole solutions as realistic astrophysical objects, they should be proven stable under perturbations. Thus, the stability analysis is a crucial next step.

Motivation O	Black holes have (no) hair! 000	Scalar-tensor theories	Solutions with primary scalar hair	Conclusions 000

Future Directions:

- To consider such black-hole solutions as realistic astrophysical objects, they should be proven stable under perturbations. Thus, the stability analysis is a crucial next step.
- Study the quasinormal modes of black holes with primary scalar hair.

Motivation	Black holes have (no) hair!	Scalar-tensor theories	Solutions with primary scalar hair	Conclusions
O	000		0000000000	○●○

Future Directions:

- To consider such black-hole solutions as realistic astrophysical objects, they should be proven stable under perturbations. Thus, the stability analysis is a crucial next step.
- Study the quasinormal modes of black holes with primary scalar hair.
- Is it possible to generalize the method to construct rotating black-hole solutions with primary scalar hair?

Motivation O	Black holes have (no) hair! 000	Scalar-tensor theories	Solutions with primary scalar hair 0000000000	Conclusions 00●

NASA's Goddard Space Flight Center/Jeremy Schnittman and Brian P. Powell