Structure formation in spin-s ULDM

Jessica N. Lopez-Sanchez

On behalf of E. Munive, C. Skordis and F. Urban

(arXiv.2502.03561)

What is ULDM?

 \star The wave nature effects become relevant at galactic scales.

What is ULDM?

 \star Central regions of galaxies are made of **BECs**.

Small-scale effects of the spin-0 field

★ Cut-off at small scales and interference patterns.

★ Spin-0 (FDM) ULDM naturally predict core halos.

Why higher spin?

★ The field can have spin-0, 1 or 2.

Most studied case

★ Spin-0 is **highly constrained**.

★ Higher spin offers a richer (still unexplored) phenomenology.

Why higher spin?

★ Different interference patterns:

In larger component fields orthogonal components do not interfere.

Higher spin

★ Intrinsic spin: The final core is fractionally polarized.

Evolution of spin-s ULDM

The ground state solution for higher spin

The wave function can be decomposed as

Tensor

Simulation setup

Multiple soliton merger: Spin-0

Multiple soliton merger: Spin-1

Multiple soliton merger: Spin-2

Comparison between models

Spin-s ULDM halos: Density profiles

Spin-s ULDM halos: Spin

Scaling relations for ULDM

Construction of a DM profile

Dwarf spheroidal timing problem

★ In CDM prescription:

The satellite remains orbiting

★ In FDM prescription

Equivalent DM profiles

★ Characterise any DM profile as a function of N_{sol}

$$\mu_{\rm eff} \equiv \frac{\rho_{c,0}^{\rm sat}}{\bar{\rho}_{\rm eff}}$$

$$\bar{\rho}_{\text{eff}} = \bar{\rho}_{\text{halo}}(r_{\text{sat}}) - \rho_{\text{halo}}(r_{\text{sat}})$$

Survival time in a ULDM halo

Same $\mu_{\rm eff}$ value

- ★ All models predict the same survival time.
- ★ It reproduces the same case as an uniform sphere.

★
$$μ_{eff}$$
~ T_{survival}

Survival time in a ULDM halo

Higher spin give rise to less dense core structures

It could alleviate the problem in Veltmaat et al. (2020): Spin-0 + baryons lead to cuspy profiles (Core-cusp problem)

Spin-s ULDM model may predict longer dynamical times

It could relax the timing problem for dwarf spheroidal galaxiesgiving new constraints over the mass.

Comparison with observations!