Dark Energy after DESI DR2

Rodrigo Calderón Institute of Physics (FZU), Czech Academy of Sciences

In collaboration with K. Lodha, A. Shafieloo, E. Linder, W. Matthewson & DESI collaboration

CosmoGrav - Spring 2025 07/04

The era of Stage-IV surveys: DESI, Euclid, Rubin

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

~5,000 (robot) optic fiber positioners

The era of Stage-IV surveys: DESI, Euclid, Rubin

Rodrigo Calderón

The era of Stage-IV surveys: DESI, Euclid, Rubin

Schematically, LSS probes

Cosmology $\delta^2(z) \qquad b^2(z^{\mathrm{PNG}},k) \left(1+eta(z)\mu^2
ight)^2$ $\left| P_g(z,k,\mu) \sim P_{\zeta}(k) \quad T^2(k) \right|$ Gravity/Expansion Inflation Redshift-space

Rodrigo Calderón

The era of Stage-IV surveys: DESI, Euclid, Rubin

Schematically, LSS probes

$$\begin{array}{c} \begin{array}{c} \text{Cosmology} \\ P_g(z,k,\mu) \sim P_{\zeta}(k) & T^2(k) & \delta^2(z) \\ \text{Inflation} & \text{Gravity/Expansion} \end{array} & b^2(z^{\text{PNG}},k^{\text{O}}) & \left(1+\beta(z)\mu^2\right)^2 \\ \text{Redshift-space} \end{array}$$

Exquisite measurements of Growth & Expansion Histories!

Modified Expansion

$$\frac{H^2(z)}{H_0^2} = \Omega_m a^{-3} + (1 - \Omega_m)$$

Modified Growth

$$f' + \left(f + 2 + \frac{h'}{h}\right)f = \frac{3}{2}\Omega_m(z)$$

Rodrigo Calderón

The era of Stage-IV surveys: DESI, Euclid, Rubin

Schematically, LSS probes

$$\begin{array}{c} \begin{array}{c} \text{Cosmology} \\ P_g(z,k,\mu) \sim P_{\zeta}(k) & T^2(k) & \delta^2(z) \\ \text{Inflation} & \text{Gravity/Expansion} \end{array} & b^2(z^{\text{PNG}},k^{\text{PNG}}) & \left(1+\beta(z)\mu^2\right)^2 \\ \text{Redshift-space} \end{array}$$

Exquisite measurements of Growth & Expansion Histories!

Modified Expansion

$$\frac{H^2(z)}{H_0^2} = \Omega_m a^{-3} + (1 - \Omega_m) f_{\text{DE}}(z)$$

Modified Growth

$$f' + \left(f + 2 + \frac{h'}{h}\right)f = \frac{3}{2}\Omega_m(z) \ \mu(z)$$

Rodrigo Calderón

Clustering: 2pt statistics

 $s^{2}\xi_{0}(s)\left[h^{-2}{
m Mpc}^{2}
ight]$

 $s^2 \xi_2(s) \left[h^{-2} \mathrm{Mpc}^2
ight]$

 $s^2 \xi_0(s) \left[h^{-2} \mathrm{Mpc}^2
ight]$

 $^{2}\xi_{2}(s)\left[h^{-2}{
m Mpc}^{2}
ight]$

20

Raw data in the form : (z, ϕ, θ)

Geometrical "Alcock-Paczyński" (AP) effect

fid UM r_d^{fid} r_d^{fid} r_d r_d

Distance measurements

DESI Collaboration, Abdul-Karim et al - arXiv: 2503.14738

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

 $D_H(z) = H^{-1}(z; \Theta_{\text{cosmo}})$

$D_M(z) = \int_0^z \frac{dz'}{H(z';\Theta_{\rm cosmo})}$

DESI Collaboration, Abdul-Karim et al - arXiv: <u>2503.14738</u>

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

 $w(a) = w_0 + w_a(1 - a)$ is a "phenomenological" parametrisation

DESI Collaboration, Abdul-Karim et al - arXiv: <u>2503.14738</u>

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

 $w(a) = w_0 + w_a(1 - a)$ is a "phenomenological" parametrisation

• Extremely efficient in approximating the observables, i.e. $D_A(z) \& H(z)$

NOT w(z) itself!

DESI Collaboration, Abdul-Karim et al - arXiv: <u>2503.14738</u>

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

 $w(a) = w_0 + w_a(1 - a)$ is a "phenomenological" parametrisation

• Extremely efficient in approximating the observables, i.e. $D_A(z) \& H(z)$

> NOT w(z) itself! \rightarrow spurious "phatom-crossing" w(z) < -1

DESI Collaboration, Abdul-Karim et al - arXiv: 2503.14738

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

• Extremely efficient in approximating the observables, i.e. $D_A(z) \& H(z)$

> NOT w(z) itself! \rightarrow spurious "phatom-crossing" w(z) < -1

4.0

DESI Collaboration, Abdul-Karim et al - arXiv: 2503.14738

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

• Extremely efficient in approximating the observables, i.e. $D_A(z) \& H(z)$

> NOT w(z) itself! \rightarrow spurious "phatom-crossing" w(z) < -1

> > Minimally-coupled scalar field ϕ

$$w_{\phi}(z) = \frac{P_{\phi}}{\rho_{\phi}} = \frac{\frac{1}{2}\dot{\phi}^2 - V(\phi)}{\frac{1}{2}\dot{\phi}^2 + V(\phi)} \longrightarrow -1 \le w_{\phi}(z) \le 1$$

4.0

The w₀-w_a plane

DESI Collaboration, Abdul-Karim et al - arXiv: 2503.14738

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

4.0

• Extremely efficient in approximating the observables, i.e. $D_A(z) \& H(z)$

> NOT w(z) itself! \rightarrow spurious "phatom-crossing" w(z) < -1

> > Minimally-coupled scalar field ϕ

$$w_{\phi}(z) = \frac{P_{\phi}}{\rho_{\phi}} = \frac{\frac{1}{2}\dot{\phi}^2 - V(\phi)}{\frac{1}{2}\dot{\phi}^2 + V(\phi)} \longrightarrow -1 \le w_{\phi}(z) \le 1$$

How robust are these results?

$3M_{\rm Pl}^2 H^2(z) = \rho_m(z) + \rho_{\rm DE}(z) + \dots$

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

DESI Coll. - R. Calderon, K. Lodha, A. Shafieloo, E. Linder et al - JCAP 10 (2024) 048

$3M_{\rm Pl}^2 H^2(z) = \rho_m(z) + \rho_{\rm DE}(z) + \dots$

Chebyshev Polynomial Expansion

$$w(z) \equiv P/\rho = \sum_{i=0}^{N} C_i T_i(x)$$

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

DESI Coll. - R. Calderon, K. Lodha, A. Shafieloo, E. Linder et al - JCAP 10 (2024) 048

 $3M_{\rm Pl}^2 H^2(z) = \rho_m(z) + \rho_{\rm DE}(z) + \dots$

Chebyshev Polynomial Expansion

$$w(z) \equiv P/\rho = \sum_{i=0}^{N} C_i T_i(x)$$

$$\frac{\rho_{\rm DE}(z)}{\rho_{\rm DE}(z=0)} = \exp\left(3\int_0^z [1+w]d\ln(1+z')\right)$$

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

DESI Coll. - R. Calderon, K. Lodha, A. Shafieloo, E. Linder et al - JCAP 10 (2024) 048

w(z)

 $ho_{\mathrm{DE}}(z)/
ho_{\mathrm{DE},\,0}$

 $3M_{\rm Pl}^2 H^2(z) = \rho_m(z) + \rho_{\rm DE}(z) + \dots$

Chebyshev Polynomial Expansion

$$w(z) \equiv P/\rho = \sum_{i=0}^{N} C_i T_i(x)$$

$$\frac{\rho_{\rm DE}(z)}{\rho_{\rm DE}(z=0)} = \exp\left(3\int_0^z [1+w]d\ln(1+z')\right)$$

DESI Coll. - R. Calderon, K. Lodha, A. Shafieloo, E. Linder et al - JCAP 10 (2024) 048

Rodrigo Calderón

w(z)

 $ho_{\mathrm{DE}}(z)/
ho_{\mathrm{DE},\,0}$

 $3M_{\rm Pl}^2 H^2(z) = \rho_m(z) + \rho_{\rm DE}(z) + \dots$

Chebyshev Polynomial Expansion

$$w(z) \equiv P/\rho = \sum_{i=0}^{N} C_i T_i(x)$$

$$\frac{\rho_{\rm DE}(z)}{\rho_{\rm DE}(z=0)} = \exp\left(3\int_0^z [1+w]d\ln(1+z')\right)$$

DESI Coll. - R. Calderon, K. Lodha, A. Shafieloo, E. Linder et al - JCAP 10 (2024) 048

Rodrigo Calderón

w(z)

 $ho_{\mathrm{DE}}(z)/
ho_{\mathrm{DE},\,0}$

 $3M_{\rm Pl}^2 H^2(z) = \rho_m(z) + \rho_{\rm DE}(z) + \dots$

Chebyshev Polynomial Expansion

$$w(z) \equiv P/\rho = \sum_{i=0}^{N} C_i T_i(x)$$

$$\frac{\rho_{\rm DE}(z)}{\rho_{\rm DE}(z=0)} = \exp\left(3\int_0^z [1+w]d\ln(1+z')\right)$$

DESI Coll. - R. Calderon, K. Lodha, A. Shafieloo, E. Linder et al - JCAP 10 (2024) 048

Rodrigo Calderón

 $3M_{\rm Pl}^2 H^2(z) = \rho_m(z) + \rho_{\rm DE}(z) + \dots$

$$w(z) \equiv P/\rho = \sum_{i=0}^{N} C_i T_i(x)$$

$$\frac{\rho_{\rm DE}(z)}{\rho_{\rm DE}(z=0)} = \exp\left(3\int_0^z [1+w]d\ln(1+z')\right)$$

DESI Coll. - R. Calderon, K. Lodha, A. Shafieloo, E. Linder et al - JCAP 10 (2024) 048

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

Beyond a linearly evolving w(a)

 $3M_{\rm Pl}^2 H^2(z) = \rho_m(z) + \rho_{\rm DE}(z) + \dots$

$$w(z) \equiv P/\rho = \sum_{i=0}^{N} C_i T_i(x)$$

$$\frac{\rho_{\rm DE}(z)}{\rho_{\rm DE}(z=0)} = \exp\left(3\int_0^z [1+w]d\ln(1+z')\right)$$

DESI Coll. - R. Calderon, K. Lodha, A. Shafieloo, E. Linder et al - JCAP 10 (2024) 048

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

Beyond a linearly evolving w(a)

 $3M_{\rm Pl}^2 H^2(z) = \rho_m(z) + \rho_{\rm DE}(z) + \dots$

$$w(z) \equiv P/\rho = \sum_{i=0}^{N} C_i T_i(x)$$

$$\frac{\rho_{\rm DE}(z)}{\rho_{\rm DE}(z=0)} = \exp\left(3\int_0^z [1+w]d\ln(1+z')\right)$$

DESI Coll. - R. Calderon, K. Lodha, A. Shafieloo, E. Linder et al - JCAP 10 (2024) 048

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

Beyond a linearly evolving w(a)

 $3M_{\rm Pl}^2 H^2(z) = \rho_m(z) + \rho_{\rm DE}(z) + \dots$

$$w(z) \equiv P/\rho = \sum_{i=0}^{N} C_i T_i(x)$$

$$\frac{\rho_{\rm DE}(z)}{\rho_{\rm DE}(z=0)} = \exp\left(3\int_0^z [1+w]d\ln(1+z')\right)$$

DESI Coll. - R. Calderon, K. Lodha, A. Shafieloo, E. Linder et al - JCAP 10 (2024) 048

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

Beyond a linearly evolving w(a)

$3M_{\rm Pl}^2 H^2(z) = \rho_m(z) + \rho_{\rm DE}(z) + \dots$

Chebyshev Polynomial Expansion

$$w(z) \equiv P/\rho = \sum_{i=0}^{N=3} C_i T_i(x)$$

$$\frac{\rho_{\rm DE}(z)}{\rho_{\rm DE}(z=0)} = \exp\left(3\int_0^z [1+w]d\ln(1+z')\right)$$

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

DESI Collaboration, K. Lodha, R. Calderon, W. Matthewson, A. Shafieloo et al. arXiv: 2503.14743

Expansion

DESI Collaboration - R. Calderon, K. Lodha, A. Shafieloo, E. Linder et al - JCAP 10 (2024) 048

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

Robustness of the results

justified/required by the data

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

Robustness of the results

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

2 "distinct" regions in phase-space

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

2 "distinct" regions in phase-space

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

2 "distinct" regions in phase-space

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

Quintessence-like models

DESI Collaboration, K. Lodha, R. Calderon, W. Matthewson, A. Shafieloo et al. arXiv: 2503.14743

Rodrigo Calderón

 $w \ge -1$

A concrete axion-like $V(\varphi)$

DESI Collaboration, K. Lodha, R. Calderon, W. Matthewson, A. Shafieloo et al. arXiv: <u>2503.14743</u>

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

 $w \ge -1$

 $V(\varphi) = m_a^2 f_a^2 \left[1 + \cos(\varphi/f_a)\right]$

 $\Delta \chi_{\varphi}^2 = -6.9$

VS.

 $\Delta \chi^2_{w_0 w_a} = -17.4$

Phantom crossing seems to be **needed to significantly improve** the fit over ΛCDM

Testing gravity at cosmological scales

DESI Collaboration, A.G. Adame et al - arXiv: 2411.12022

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

Massive Particles (Growth)

 $-\frac{k^2}{a^2}\Psi = 4\pi G\mu(a,k)\rho\delta$

 $\mu(a) = 1 + \mu_0 \frac{\Omega_{\text{DE}}(a)}{\Omega_{\text{DE},0}}$

Massless Particles (Lensing)

 $-\frac{k^2}{a^2}(\Phi + \Psi) = 8\pi G \Sigma(a, k)\rho\delta$ $\Sigma(a) = 1 + \Sigma_0 \frac{\Omega_{\text{DE}}(a)}{\Omega_{\text{DE},0}}$

Testing gravity at cosmological scales

DESI Collaboration, A.G. Adame et al - arXiv: 2411.12022

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

Massive Particles (Growth)

 $-\frac{k^2}{a^2}\Psi = 4\pi G\mu(a,k)\rho\delta$

 $\mu(a) = 1 + \mu_0 \frac{\Omega_{\text{DE}}(a)}{\Omega_{\text{DE},0}}$

Massless Particles (Lensing)

$$-\frac{k^2}{a^2}(\Phi + \Psi) = 8\pi G \Sigma(a, k)\rho\delta$$
$$\Sigma(a) = 1 + \Sigma_0 \frac{\Omega_{\text{DE}}(a)}{\Omega_{\text{DE},0}}$$

DESI Collaboration - M. Ishak, J. Pan, R. Calderon et al - arXiv: 2411.12022

Rodrigo Calderón

DESI Collaboration - M. Ishak, J. Pan, R. Calderon et al - arXiv: 2411.12022

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

DESI (on its own) can only constrain the growth of structures $\mu(z)$

DESI Collaboration - M. Ishak, J. Pan, R. Calderon et al - arXiv: 2411.12022

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

DESI (on its own) can only constrain the growth of structures $\mu(z)$

1.0

DESI Collaboration - M. Ishak, J. Pan, R. Calderon et al - arXiv: 2411.12022

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

DESI (on its own) can only constrain the growth of structures $\mu(z)$

• Without CMB lensing, constraints on $\Sigma(z)$ are highly sensitive to the choice of CMB likelihood

DESI Collaboration - M. Ishak, J. Pan, R. Calderon et al - arXiv: 2411.12022

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

DESI (on its own) can only constrain the growth of structures $\mu(z)$

 Without CMB lensing, constraints on Σ(z) are highly sensitive to the choice of CMB likelihood

• Including CMB lensing helps stabilising the constraints on $\Sigma(z)$

 C_B

DESI Collaboration - M. Ishak, J. Pan, R. Calderon et al - arXiv: 2411.12022

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

Implications of w(z) < -1

In the EFT of DE, linear perturbations entirely characterised

by 4 functions of time

- "Running": $d \ln M_{\rm eff}^2$ $\alpha_M =$ $d \ln a$
- "Braiding": $\alpha_B(t)$
- "Kineticity": $\alpha_{K}(t)$
- "Tensor speed excess": $\alpha_T = c_T^2 - c^2 \lesssim 10^{-15}$

At least one of the $\alpha_i(t) \neq 0$!

 $\alpha_i(t) = c_i \ \Omega_{DE}(a)$

4

DESI Collaboration - M. Ishak, J. Pan, R. Calderon et al - arXiv: 2411.12022

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

Implications of w(z) < -1

In the EFT of DE, linear perturbations entirely characterised

by 4 functions of time

- "Running": $d \ln M_{\rm eff}^2$ $\alpha_M =$ $d \ln a$
- "Braiding": $\alpha_B(t)$
- "Kineticity": $\alpha_{K}(t)$
- "Tensor speed excess": $\alpha_T = c_T^2 c^2 \lesssim 10^{-15}$

At least one of the $\alpha_i(t) \neq 0$!

 $\alpha_i(t) = c_i \ \Omega_{DE}(a)$

Summary

If confirmed, these results could have profound theoretical implications for DE DE/DM interactions, Non-minimal couplings/Modified gravity

> Careful investigation of the CMB lensing excess $(A_{lens} > 1)$ $\rightarrow \Sigma(z) > 1$ $\rightarrow \Sigma m_{\nu} < 0$

DESI (DR2) constraints from 2-pt & 3-pt functions are on the way (+Euclid results!) Extremely exciting times for Cosmology calderon@fzu.cz

07 April 2025 - CosmoGrav Workshop

Rodrigo Calderón

 \bullet

 \bullet

Tantalising hints of an evolving dark energy component: ~ 3 – 4 σ deviation from Λ ($w_0 = -1, w_a = 0$) Results are stable under different data combinations & **NOT** driven by the parametrisation of w(a)

Models that cross w = -1 consistently fit the data better than those that do not (GP suggests w(z) < -1 at $\sim 3\sigma$)

DESI Collaboration, K. Lodha, R. Calderon, W. Matthewson, A. Shafieloo et al. arXiv: 2503.14743

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

Validation with Mocks

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

Baryon Acoustic Oscillations

• The BAO feature is expected to be isotropic !

Rodrigo Calderón

- The BAO feature is expected to be isotropic !
- Non-linear gravitational evolution introduce anisotropies along longitudinal/transversal directions
- \rightarrow Broadening of the BAO peak in 2pt correlation function

Rodrigo Calderón

- The BAO feature is expected to be isotropic !
- Non-linear gravitational evolution introduce anisotropies along longitudinal/transversal directions
- \rightarrow Broadening of the BAO peak in 2pt correlation function
- By reconstructing the velocity field, we can "undo" the effect of gravity/non-linearities.
- \rightarrow Increase significance of the detection !

Rodrigo Calderón

- The BAO feature is expected to be isotropic !
- Non-linear gravitational evolution introduce anisotropies along longitudinal/transversal directions
- \rightarrow Broadening of the BAO peak in 2pt correlation function
- By reconstructing the velocity field, we can "undo" the effect of gravity/non-linearities.
- \rightarrow Increase significance of the detection !

Ruling out inverted ordering for ν 's?

DESI Collaboration, A.G. Adame et al - arXiv: <u>2411.12022</u>

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

 $\Delta P(k)/P(k) \propto -\Omega_{\nu}/\Omega_{m}$

Negative neutrino masses?

Craig et al. [2405.00836]

Rodrigo Calderón

$$\sum m_{\nu,\text{eff}}) \left[X_{\theta}^{|\sum m_{\nu,\text{eff}}|} - X_{\theta}^{\sum m_{\nu}=0} \right]$$

$$\sum m_{\nu,\text{eff}}) \left[X_{\theta}^{|\sum m_{\nu,\text{eff}}|} - X_{\theta}^{\sum m_{\nu}=0} \right]$$

$$\sum m_{\nu,\text{eff}} \left[X_{\theta}^{|\sum m_{\nu,\text{eff}}|} - X_{\theta}^{\sum m_{\nu}=0} \right]$$

Is there an excess of lensing?

Cosmology from CMB lensing and delensed EE power spectra using SPT-3G polarization data

SPT Collaboration - Ge et al. [2411.06000]

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

$$\Sigma \tilde{m}_{
u} = -0.122 \pm 0.072 \,\mathrm{eV}$$

Neutrino-like lensing template

Systematics in the data?

R. Calderon, A. Shafieloo, D. Hazra, W. Sohn - JCAP 08 (2023) 059

Rodrigo Calderón

07 April 2025 - CosmoGrav Workshop

Residuals to CamSpec

The "cosmic calibration" tension

Rodrigo Calderón

The "cosmic calibration" tension

Rodrigo Calderón

