

Cherenkov vs. ghosts

Eugeny Babichev

Laboratoire de Physique des 2 Infinis Irène Joliot-Curie

based on arxiv:2412.20093

PRAGUE SPRING 2025 7-12 April 2025

Outline

Cherenkov radiation

Ghosts in modified gravity

Cherenkov vs ghosts

Signal propagation and dispersion relation

phase: $\Phi = -\omega k + kx$

propagation is along $\Phi = \text{const}$ (Also characteristics)

Signal propagation and dispersion relation

$$k_{\mu} = \nabla_{\mu} \Phi = \{-\omega, k\} \rightarrow$$
$$k^{\mu} = \{\omega, k\}$$

 k_{μ} is orthogonal to $\Phi = \text{const}$

Introduce N^{μ} : $N^{\mu}k_{\mu} = 0$

 N^{μ} is tangential to $\Phi={\rm const}$ i.e. N^{μ} is propagation vector $N^{\mu}=\{k,\omega\}$

 $\clubsuit \ k^{\mu}$ and N^{μ} are different

Signal propagation and dispersion relation

 k^{μ} is 4-momentum (p^{μ})

$$k^{\mu} = \{\omega, k\}, \quad \omega = c_s k$$

subluminal case $\omega < k$ (for dust $\omega = 0$)

✤ null case $\omega = k$

✤ superluminal ease $\omega > k$

Electromagnetic radiation emitted when a charged particle passes through a medium at a speed greater than the velocity of light in that medium

Can the particle loose its energy to give it to a phonon? In this case no: $p_2^\mu \neq p_1^\mu + k^\mu$

How about now? Yes, the particle looses its energy to phonons. Assuming interaction: $p_2^\mu = p_1^\mu + k^\mu$

Cherenkov Radiation (1+1)

And now? No, in this case Cherenkov radiation is impossible in 1+1.

Cherenkov Radiation (1+1) (solid arrows)

Need (2+1). Heavy particle: tangential plane to the mass shell at the point $\omega^2 = m^2 + k_x^2 + k_y^2$ Assume particles propagate in *x*-direction, the change in momentum is $\Delta p^{\mu} = \{v \Delta p_x, \Delta p_x, \Delta p_y\}$

The emitted photons have $k^{\mu} = \left\{ \pm c_s \sqrt{k_x^2 + k_y^2}, k_x, k_y \right\}$

5

$$0 = \Delta p^{\mu} + k^{\mu}$$

where $\Delta p^{\mu} = p_2^{\mu} - p_1^{\mu}$
$$\int$$

$$\Delta p^{\mu} = \{ v \Delta p_x, \Delta p_x, \Delta p_y \}$$
$$k^{\mu} = \left\{ \pm c_s \sqrt{k_x^2 + k_y^2}, k_x, k_y \right\}$$

$$\cos\theta = \frac{k_x}{\sqrt{k_x^2 + k_y^2}} = \frac{c_s}{v}$$

Cherenkov cone

Ghosts

Ghosts

Scalar field in Minkowski

$$\mathcal{L}_{\phi} = -\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - \frac{m^2}{2}\phi^2 = \frac{1}{2}\dot{\phi}^2 - \frac{1}{2}(\vec{\nabla}\phi)^2 - \frac{m^2\phi^2}{2}$$

Canonical momentum $p=\frac{\partial \mathcal{L}_{\phi}}{\partial \dot{\phi}}=\dot{\phi}$ Hamiltonian

$$H = p\dot{\phi} - \mathcal{L}_{\phi} = \frac{1}{2}\dot{\phi}^{2} + \frac{1}{2}(\hat{\nabla}\phi) + \frac{m^{2}\phi^{2}}{2}$$

 $H \geqslant 0, \text{ bounded from below}$

Ghosts

``X `X

Consider a scalar with opposite sign

Standard problem of ghosts

Instability of black holes in scalar-tensor theories?

Perturbations of black holes in Horndeski theory (scalar-tensor theory of gravity) with time-dependent scalar field:

Hamiltonian of perturbations (spherical symmetry):

$$H\sim rac{1}{b_1}\left(\pi-rac{1}{2}b_3\chi'
ight)^2+b_2\chi'^2$$

 $b_1>0, \quad b_2>0.$ Boundedness from below

For interesting black hole solutions in the vicinity of the BH horizon, either b_1 or b_2 is negative \Rightarrow **instability (?)**

Hamiltonian vs instability

Does unbounded from below Hamiltonian necessarily imply instability?

NO

$$\mathcal{L} = \frac{1}{2}\dot{\chi}^2 - \frac{c_s^2}{2}{\chi'}^2 \qquad \text{Relativistic boost } c = 1:$$
$$\tilde{t} = \frac{t + vx}{\sqrt{1 - v^2}}, \quad \tilde{x} = \frac{x + vt}{\sqrt{1 - v^2}}$$

$$\mathcal{L} \to \frac{1}{1-v^2} \left[\frac{1}{2} (1-c_s^2 v^2) \dot{\chi}^2 + (1-c_s^2) v \dot{\chi} \chi' - \frac{1}{2} (c_s^2 - v^2) \chi'^2 \right]$$

Hamiltonian:
$$\mathcal{H}_2 = rac{1}{2} (...)^2 + rac{1}{2} (c_s^2 - v^2) \pi'^2$$

 $\mathcal{H}_2 < 0 \text{ for } |v| > c_s$

non-GHOST

need to compare 2 (or more) species

Stability vs Hamiltonian

- When total Hamiltonian density is bounded by below, then the lowest energy state is necessarily stable.
- Inverse is not true: A Hamiltonian density which is unbounded from below does not always imply instability (contrary to common lore).
- Sometimes the unbounded Hamiltonian appears due to the "bad" choice of coordinate

The Hamiltonian is not a scalar with respect to coordinate transformations

[EB, Charmousis, Esposito-Farèse, Lehébel'17'18]

[EB, Charmousis, Esposito-Farèse, Lehébel'17'18]

CHERENKOV

O→ k^k+ sp^m

GHOST cone

Cherenkov cone

Cherenkov vs. Ghosts

Why is Cherenkov radiation ok (physical) ? And ghosts are dangerous

- Cherenkov process is not instantaneous due to the physical cutoff
- Phonons cease to exist for very high energies, when the momentum is of order of the inverse distance between atoms
- In case of photons, the dispersion relation in medium is momentumdependent, i.e. $c_s = c_s(k)$, so that the speed of photons grows as k increases
- There is no Cherenkov radiation for high energies of emitted particles

Cherenkov vs. Ghosts

Why is Cherenkov radiation ok (physical) ? And ghosts are dangerous

- If a modified gravity theory is considered to be an EFT, then there is a cutoff of the theory, beyond which the description in terms of a specific modified gravity model becomes invalid
- The cutoff on the background solution determine the largest momenta of created pairs of normal particles and ghosts.
- Yet another limitation for the rate of a ghost instability: The background is eventually destroyed by the creation of particles on top of it

Conclusions

- Some ghost instabilities in modified gravity are fully analogous to Cherenkov radiation
- These ghosts are not "extremely" dangerous, although they do lead to instability of a background solution
- Ghost cones can we observe them?